NZ

University of

"1828
£ Central Lancashire

UCLan

CO3519
Artificial Intelligence

Parameters and objectives
Multicriteria optimization
Terminology and building a glossary

Where opportunity creates success



N2

gﬁg&?gsligr?iashire
C0O35192 module structure

Upon successful completion of this module, a student will be able to:

1) Explain the theoretical underpinnings of algorithms and techniques
specific to artificial intelligence;
2) Critically evaluate the principles and algorithms of artificial intelligence;
3) Analyse and evaluate the theoretical foundations of artificial
intelligence and computing;
4) Implement artificial intelligence algorithms.
uncertainty

OptimizaticN quantification
reasoning

agents and and learning

decisions game knowledge

theory representation
modelling
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Multivariate optimization (single objective)
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Over multidimensional para-
meter spaces, minimization by
"descent” becomes steepest
descent, whereas maximiza-
tion by ascent becomes
steepest ascent.

In addition to the step size,
determined by 6 and regula-
ted by a in our codes, a direc-
tion needs to be determined.

The direction of steepest de-
scent is perpendicular to lines
of constant cost (or utility).
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Over multidimensional para-
meter spaces, minimization by
"descent” becomes steepest
descent, whereas maximiza-
tion by ascent becomes
steepest ascent.

In addition to the step size,
determined by 6 and regula-
ted by a in our codes, a direc-
tion needs to be determined.

The direction of steepest de-
scent is perpendicular to lines
of constant cost (or utility).



N2

oy
Multivariate optimization (single objective)

Over multidimensional para-
meter spaces, minimization by
"descent” becomes steepest

Ls L

int:3
point 3_

Note ereas maximiza-

nt becomes
If we have formulated this as a minimization

problem (i.e., the objective is a cost function),

rent.

opt.minimize(cost_function, initial_value, ...)  [|° the step size,

by 6 and regula-

from scipy can be employed to determine the pur codes, a direc-
optimal choice for all the parameters. o be determined.

The direction of steepest de-
NI scent is perpendlcular' ’fo lines
of constant cost (or utility).

C0O3519 26" October 2021 6
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Multivariate optimization (single objective)

Evaluate the objective function at

Reminder

Local minimization leads

to a local minimum, not

necessarily to the global
minimum.

-

This depends on the initial
J  value. For challenging
problems, it is advisable to
|| obtain a good initial value
A first, by applying a global
r optimization scheme.

=

rt).

test points tor global optimization.
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Problems with a single objective

A single maximization objective can be referred to as the utility (function).
If the single objective is to be minimized, it can be called the cost (function).

utility or cost

y
single /\‘ done |
parameter

| X

\/

mu.|t|\{ar|e.1te o, R Sk done |
optimization % 21 :

=

Parameters: Quantites that are part of the solution and directly in your control.

Obijectives: Quantities that should become as small (or as large) as possible,
but can be influenced only indirectly, through a good choice of parameters.

C0O3519 26" October 2021 8



N2

oy
Types of optimization problems

Is there one parameter, or are there multiple parameters?
Is there one objective, or are there multiple objectives?

utility or cost multicriteria (MCO)
y
single
parameter .

multivariate
optimization

AUTOMATED -
" WAREHOUSE ROBOT =3

-

Parameters: Quantites that are part of the solution and directly in your control.

Obijectives: Quantities that should become as small (or as large) as possible,
but can be influenced only indirectly, through a good choice of parameters.

C0O3519 26" October 2021 9
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Formalization of optimization problems

A parameter space A objective space
2 N
O : o
o @ Prointx=Ixy x; x)] %
% In parameter space o
: 3
Q- *A
((\6\_8( . C‘\\le\J )
0o oo
s — s
parameter x, objective y,

In general, there can be any number m of parameters (m-dimensional para-
meter space) and any number n of objectives (n-dimensional objective space).

C0O3519 26" October 2021 10
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Formalization of optimization problems

A parameter space A objective space

X Ny : — f(x) =
E . B q>_) ‘ pOInt y - (X) - [_yol )/1/ y2]
© @ rointx=1Ix,x,x = in objective space
% In parameter space o
: 3
Q

%

@ o\
o° ©
> — >
parameter x, objective y,

In general, there can be any number m of parameters (m-dimensional para-
meter space) and any number n of objectives (n-dimensional objective space).

The optimization problem is defined by a function f that maps a list of para-
meters x = [x,, ..., x__]to the outcome for the objectivesy =f(x) =y, ...,y _.I.

C0O3519 26" October 2021 11
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Formalization of optimization problems

objective y,

A parameter space A objective space
><N
o ° — @ (x)
O X
£ @ f(x)
% X"’ /
Q

>

s T
parameter x, objective y,

Design choices are made by selecting a point in parameter space, but they are
evaluated in objective space, by comparing the outcomes fory,, ...,y _ ..

The optimization problem is defined by a function f that maps a list of para-
meters x = [x,, ..., x__]to the outcome for the objectivesy =f(x) =y, ...,y _.I.

C0O3519 26" October 2021 12
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Formalization of optimization problems

objective y, o
A parameter space objective space
><C\J
g ® (x)
2| <@
% x' @ ~ Notation
o e’@( ¥A By x, x’, anql x"" we here denotg dif- \/V
a(a((\ ferent possible parameter choices.
Q
By f(x), f(x'), f(x"") we denote the F(x") _

outcome in terms of the objectives.
For this, we will also write 'y, y*, y".
Design choices are m )ace, but they are
evaluated in objectiv| (Notto be confused with firstand |, y

o c c or ***1r/n-1°
second derivatives. This here are

The optimization prol just different possible values.) a list of para-

., x__.|to the outcome tor the objectivesy =7(x) =[y,, ..., y ]

par objective y,

meters x = [x,, ..

C0O3519 26" October 2021 13



N2

oy
Formalization of optimization problems

objective y, -
A parameter space objective space
><C\J
g ® (x)
:| <@
% x'' @ —_ Terminology
- e *+ A The function f that maps points x in $d
@ parameter space to points f(x) =y
2 . L :
Q in objective space can still be called
a cost function if all the criteria are | /(")
s

oar minimization objectives. objective y,

Design choices are n| Itis called a utility function if all the }ace, but they are
criteria are maximization objectives. y y
o et Yoo

evaluated in objectiv

The optimization problem is defined by a function f that maps a list of para-

meters x = [x , x__.]to the outcome for the objectivesy =f(x)=[y,, ..., y_,].

or

C0O3519 26" October 2021 14
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Observation
Evaluate the

a set of equig The size of the parameter space (e.g., the
grid, coverin number of points on a grid) increases .
meter spacel exponentially with its dimension, i.e., with the
number of parameters. It can be very

Challenge: 1| computationally expensive to explore high-

method expl dimensional parameter spaces.
in terms of th
parameters. For n parameters @ ® ®

with at least two values each,
2" points need to be evaluated.

In case of high-dimensional para-
meter spaces, randomized algo- o o ®
rithms are often used to select

test points for global optimization.

C0O3519 26" October 2021 15
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Observation
Evaluate the

a set of equid The size of the parameter space (e.g., the
grid, coverin number of points on a grid) increases
meter space| exponentially with its dimension, i.e., with the
number of parameters. It can be very
Challenge: T computationally expensive to explore high-
method expl dimensional parameter spaces.

in terms of th
parameters. | It helps to restrict the problem description to
with at least{ the parameters that have the most significant
2" points neq  influence on the outcome, neglecting others.

In case of hid Where it is possible to express the best choice

meterspace{ for one parameter x; as a function of the value
rithms are off

. of other parameters, x. = g(x, x,, ...), that
test points fd J

should be done; x. can then be discarded.

C0O3519 26" October 2021 16
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Multiple parameters

Evaluate the objective function at  Jiulii, 0 e .
t of equidistant points on a S il e
217, concaring tha il A\ @ L g ’/ﬁ%/f’
- Hoa oaTONS 1011l 0TS i 2 N (L

grl ! Coverlng € whole para s /s 35 o ii' l(ﬁuaf

meter space (or the relevant part). |\ el e {;31
: O st 008 1oy

2!
l,'_h! 5
Rl

Pl

L1012
sz 007100657/ L1 g0 5
102051021 ==t ﬁ" 610

755 016101 a1 003108101 jL01 0
21 ey 01 U T
o1 102110201520 fon i1 P T o1 1.‘!‘:"1%_"“@' :
o

Challenge: The uniform-grid
method explodes exponentially [ @ :
in terms of the number of
parameters. For n parameters T

c 102111%“9331"5“::1 3 S aal02 1 e, AP Moo 102 dF
with at least two values each, e e e e e S e, Smp e T

2" points need to be evaluated. e e

i -

020 (s = 101817 o2l

+ 20,021 p e A : 107
1011071016 w10 4 I 10200

[ 015019 LU TN, =k 0]

1021 B e

il

In case of high-dimensional para-
meter spaces, randomized algo-

a0 T
= ang) U . 2 - )
U 101 . 4
0] : 0
§

rithms are often used to select SN f

a]
i

(EopynightiEZ 02 Meteocielny 016

104702 0

05 0]

e TogARmids % f

1 13,1013 0 i D

q ‘“’%m -
" M![

. . . o : iy Ui o i
test points for global optimization. N !ﬂ ) . |
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Multiple objectives

Song by Walther von der Vogelweide (~ 1200) “ bervalberd debugtness,

Diu wolte ich gerne in einen schrin.
J& leider des enmac niht sin,

daz guot und weltlich ére

und gotes hulde mére

zesamene in ein herze komen.

These | would like to have in one box.
But sadly that may not be,

that goods and worldly honour,

and God's grace additionally,

come together in a single heart.

C0O3519 26" October 2021 19
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Song by\/\| Observation

Formulating multiple objectives only makes sense
when they are opposed to each other, at least to
Jaleiderdl  some extent. Otherwise, they can be fused into a
daz guot ( single cost function (or a single utility function).

Diu wolte

und gotes
For use in optimization and decision support, it

must be possible to evaluate the objectives (at
least qualitatively, better quantitatively) in a well-
These defined way (SMART objectives and KPls).

But sadqy—rrorerrroy—ro—oy

that goods and worldly honour,
and God's grace additionally,
come together in a single heart.

Zesamene

CO3519 26™ October 2021
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Multiple objectives
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Song by\/‘|

Diu wolte
Ja leider d
daz guot v
und gotes
zesamene

These
But saq
that gq
and G¢
come 1

Observation

Formulating multiple objectives only makes sense
when they are opposed to each other, at least to

some extent. Otherwise, they can be fused into a
single cost function (or a single utility function).

For use in optimization and decision support, it
must be possible to evaluate the objectives (at
least qualitatively, better quantitatively) in a well-
defined way (SMART objectives and KPIs).

This often requires models: a) a model of the out-
come, in terms of objectives; b) a model of possi-
ble courses of action, expressible by parameters;
c) a function that maps parameters to objectives.

b ?E\"Xﬁ%&‘hmg@g \

CO3519

26™ October 2021

e
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Multiple objectives: Walther’s example

List of SMART objectives

1) My income will increase by at least 10% per
year over each of the coming five years.

2) I will be invited to perform for the Bishop of
Passau at least once a year over each of the
coming five years.

3) I will give at least 10% of my income to the
poor in each of the coming five years.

The list of SMART objectives is not directly
very suitable for optimization. Why not?

CO3519 26™ October 2021
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Multiple objectives: Walther’s example

List of key performance indicators (KPls)

1) Annual increase of income, to be determined
on an annual basis; target: all = 10%.

2) Invited gigs at Passau, per year (five values);
target: all = 1.

3) Share of income given to the poor, to be
determined each year; target: all = 10%.

The above are three quantifiable and measura-

ble objectives x, x,, x, (or fifteen, x,, ..., x,,, if the

yearly outcomes are considered separately).

CO3519 26™ October 2021
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Multiple objectives: Walther’s example

List of key performance indicators (KPls)

1) Annual increase of income, to be determined
on an annual basis; target: all = 10%.

2) Invited gigs at Passau, per year (five values);
target: all = 1.

3) Share of income given to the poor, to be
determined each year; target: all = 10%.

The above are three quantifiable and measura-

ble objectives x, x,, x, (or fifteen, x,, ..., x,,, if the

yearly outcomes are considered separately).

CO3519 26™ October 2021

S i el R 5
=3

Observation

A well-formulated KPI
together with a target

value is usually suitable
as a SMART objective.

For optimization, we
need to rely on the KPIs.

24
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Multiple objectives: Walther’s example

List of key performance indicators (KPls)

1) Annual decrease of income, to be deter-
mined on an annual basis; target: all <-10%.

2) Invited gigs at Passau, per year (five values),
multiplied by the factor -T1; target: all < -1.

3) Share of income not given to the poor, to be
determined each year; target: all < 90%.

The above are now given as three minimization
objectives x,, x,, x, (or fifteen, x, ..., x,,, if the

yearly outcomes are considered separately).

CO3519 26™ October 2021
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Multiple objectives: Walther’s example

List of key performance indicators (KPls)

S i el R 5
=3

1) Annual decrease of income, to be deter- o ﬁ_dhﬂ

mined on an annual basis; target: all <-10%. .
d ° Observation

2) Invited gigs at Passau, per year (five values), Can we now run
opt.minimize() and do a

multiplied by the factor -1; target: all < -1. _ =\ G
numerical minimization?

3) Share of income not given to the poor, to be No? Why not - what
determined each year; target: all < 90%. would we need that is
missing?

The above are now given as three minimization

objectives x,, x,, x, (or fifteen, x, ..., x,,, if the

yearly outcomes are considered separately).

C0O3519 26" October 2021 26
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Parameters & objectives: Investment example

1.2.3. Cost functions with more than two parameters

The multivar notebook defines a cost function for a hypothetical industrial operation;
at planning and design stage, you have direct control over the following parameters:

e The investment i, done a single time, 1n units of £.
e The amount of goods p to be produced, in units of £/year.
e The depreciation period d (how long it is meant to operate), in units of years.

In the investment-decision example from multivar, we specified three para-
meters i, p, and d. However, in the underlying model, the amount of goods p
that can be produced without external manufacturers is given by a function
p = g(i) of the value i. This might be simplified to a two-parameter problem.

C0O3519 26" October 2021 27
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Parameters & objectives: Investment example

1.2.3. Cost functions with more than two parameters

The multivar notebook defines a cost function for a hypothetical industrial operation;
at planning and design stage, you have direct control over the following parameters:

e The investment i, done a single time, 1n units of £.
e The amount of goods p to be produced, in units of £/year.
e The depreciation period d (how long it is meant to operate), in units of years.

total investment i = GBP 100808 A Single‘ObjeCtive cost function was
Eroclics Lo unl e p = GBP 1000008 per year — gjyen. However, the evaluation spe-
depreciation period d = 7 years

cifies multiple contributions to it.
operating cost: GBP 102915.03 per year

depreciation: GBP 14285.71 per year

prod.cost: ~ GBP 900000.6 per year It may make sense to distinguish
sales contrib.: GBP -1000080.0 per year . . L.
— two objec’uves: Minimize proper

total deficit: GBP 17200.74 per year costs, and maximize sales income.

C0O3519 26" October 2021 28
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Formalization of optimization problems

objective y,

A parameter space A objective space
><N
o ° — @ (x)
O X
£ @ f(x)
% X"’ /
Q

>

s T
parameter x, objective y,

Design choices are made by selecting a point in parameter space, but they are
evaluated in objective space, by comparing the outcomes fory,, ...,y _ ..

The optimization problem is defined by a function f that maps a list of para-
meters x = [x,, ..., x__]to the outcome for the objectivesy =f(x) =y, ...,y _.I.

C0O3519 26" October 2021 29
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Formalization of optimization problems

objective y,

A parameter space A objective space
AN
X
—
5| x@
O X
S
O x"
©
Q

>

s
parameter x, objective y,

Design choices are made by selecting a point in parameter space, but they are
evaluated in objective space, by comparing the outcomes fory,, ..., y_..

How are the design choices evaluated? How can we compare y = f(x), y' = f(x’),
and y" = f(x"), and decide which is better, when there are conflicting criteria?

CO3519 26™ October 2021 30
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Assessment of solutions using multiple criteria

Spider diagrams are often used to visualize points in objective space.

Ay,

Assume thaty,, y,, y, and y,
are all minimization objectives.

y= [3/ 2/ 5/ 4]

Each polygonin a
spider diagram
represents one

point in objective

space, in this casey.

C0O3519 26" October 2021 31
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Assessment of solutions using multiple criteria

Spider diagrams are often used to visualize points in objective space.

CO3519

26™ October 2021

Assume thaty,, y,, y, and y,
are all minimization objectives.
y = [3/ 2/ 5/ 4]
y' =14,5,6, 4]

0

Note: y and y’ perform equally
in criterion y,, and in the three

other criteria, y outperforms y'.

We say: y dominates y'. Since
y" is dominated, it cannot be a
rational choice to select y'.
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Assessment of solutions using multiple criteria

Spider diagrams are often used to visualize points in objective space.

Ay
Assume thaty,, y,, y, and y,
are all minimization objectives.
4
/ /L\ y=13 25 4]
/ Q y' =14,5,6,4]
DS

>-yO y”=[21312/6]
/ y is not dominated by any of the other
points; it is better than y’ in three criteria,

N/

AN

and better than y" in two criteria.

y'' is not dominated by any of the other
points; it is better than y' in three criteria,
Y, and better thany in two criteria.
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The Pareto front

An accessible point in objective space belongs to the Pareto front whenever it
is not dominated by any other accessible point in objective space.

objective space Assume that there are two mi-
A nimization objectives, y,and y..
A y=13 2]
> I
I§ y' =[4, 5]
q) 4
o) , y" =1[2, 3]
o accessible
part of objec-
tive space
1 unaccessible .
part of objec- Aretq P
tive space ong
0 | — >
1 objective y,
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The Pareto front

An accessible point in objective space belongs to the Pareto front whenever it
is not dominated by any other accessible point in objective space.

objective space Assume that there are two mi-
A nimization objectives, y,and y..
. oYy
A y=13 2]
> I
S y' =[4, 5]
q) 1
= | y" =12, 3]
o accessible
part of objec-
tive space
unaccessible

1= part of objec- Pareto p

tive space Fong

0 I >

objective y,
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An accessible point in objective space belongs to the Pareto front whenever it
is not dominated by any other accessible point in objective space.

objective space

A .
S domi- o
o)
P
5 dominates
2
o) accessible
part of objec-
tive space
unaccessible
1= part of objec- Pareto p
tive space Fon¢
0 1' objective y,
CO3519 26™ October 2021

Assume that there are two mi-
nimization objectives, y,and y..

y =1[3, 2]
y' =[4, 5]
y' =12, 3]

y and y"’ are rational
compromises between
the two objectives.

y' is not, because it is
dominated by other
accessible points.
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Pareto optimality

An accessible point in objective space belongs to the Pareto front whenever it
is not dominated by any other accessible point in objective space.

A pointy in objective space dominates another point y’ if there is at least one
criterion by which y is better than y’, but no criterion by which y' is worse.
Consequently, if y is accessible, it can never be rational to select y’.

Not all points in objective space are accessible. A pointy in objective space is
accessible whenever there is a point x in parameter space such that f(x) =y.
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Pareto optimality

An accessible point in objective space belongs to the Pareto front whenever it
is not dominated by any other accessible point in objective space.

A pointy in objective space dominates another point y’ if there is at least one
criterion by which y is better than y’, but no criterion by which y' is worse.
Consequently, if y is accessible, it can never be rational to select y’.

Not all points in objective space are accessible. A pointy in objective space is
accessible whenever there is a point x in parameter space such that f(x) =y.

Pareto optimal solutions are potential rational compromises between criteria.
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Pareto optimality

An accessible point in objective space belongs to the Pareto front whenever it
is not dominated by any other accessible point in objective space.

A pointy in objective space dominates another point y’ if there is at least one
criterion by which y is better than y’, but no criterion by which y' is worse.
Consequently, if y is accessible, it can never be rational to select y’.

Not all points in objective space are accessible. A pointy in objective space is
accessible whenever there is a point x in parameter space such that f(x) =y.

To remember:
— The Pareto front is situated in objective space (not in parameter space).
— It contains all the accessible points that are not dominated.
— A solution x (i.e., a parameter choice, or a point in parameter space) is
Pareto optimal if and only if y = f(x) is on the Pareto front.
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Pareto optimality

An accessible point in objective space belongs to the Pareto front whenever it

is not dominated by any other accessible point in objective space.

A point
criterion
Conseq|

Not all g
accessib

To reme
— 7
— |t

Terminology st one
. . : . . e.
A solution or design choice x, i.e., a point in parameter
space, is sometimes also called a parameterization. Strictly
speaking, parameterization is the process of selecting x. ace is
It is bad practice to say “the solution x is on the Pareto =Y
front,” since the Pareto front is situated in objective space.
Instead, we say “the point f(x) is on the Pareto front.”
space).
However, both x and f(x) may be called “Pareto optimal.”

P

CO3519

\ SOTULIOTT A(T.€., d PaldiTicicel CTIOICE, O d POITIUITT PaldiTiciel bpdce) IS

areto optimal if and only if y = f(x) is on the Pareto front.
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Multidimensional objective space

>

reachable
agreement

Pareto front

error in quantity Y

unreachable

>
error in quantity X

< % an
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Example from research practice

Multidimensional objective space

>

error in quantity Y

unreachable

reachable
agreement

Pareto front

CO3519

>

error in quantity X

< % an

26t October 2021

2CLJQ molecular
models of carbon dioxide

: ) o _ S
_ s/o 105
0 6,0 | % ‘DQ
0

15
30 45
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Resilient compromises between objectives

(Example: Two-criteria optimization of molecular models.)

10 10 10
cl, C,Cl, Ju| APareto knee
R ® R 28 s ahighly
- 9% « 5| a N curved region
= \ o .5 on the Pareto

front.
0 1 2 0 1 2 0 \1 2
3’ 1% % 30’ 1%

10 10 10
! & 02H4 CZHz C2F4
R4 ® ® A
Pl - 5 el
oy \ 3 3 \
do 1 2 Y 1 2 Y 1 2
&' 1% 3' 1 % %' 1%
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Resilient compromises between objectives

The viability of models close to a Pareto knee is comparably resilient even
when priorities shift. Example: Two-criteria optimization of molecular models.

10

CO3519

10

R
. 5

0

10

3%/ %
o

o

10

5p° /%

10

5/ %
o

26™ October 2021

A Pareto knee
is a highly
curved region
on the Pareto
front.

In general, a
systematic
exploration

of the Pareto
front is
needed to find
such regions.
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