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Upon successful completion of this module, a student will be able to:

1) Explain the theoretical underpinnings of algorithms and techniques 
specific to artificial intelligence;

2) Critically evaluate the principles and algorithms of artificial intelligence;
3) Analyse and evaluate the theoretical foundations of artificial 

intelligence and computing;
4) Implement artificial intelligence algorithms.
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Parameters and
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Multivariate optimization (single objective)

Over multidimensional para-
meter spaces, minimization by 
“descent” becomes steepest 
descent, whereas maximiza-
tion by ascent becomes 
steepest ascent.

In addition to the step size, 
determined by δ and regula-
ted by α in our codes, a direc-
tion needs to be determined.

The direction of steepest de-
scent is perpendicular to lines 
of constant cost (or utility).

distance δ

point 0

point 1
distance δ

point 2 (rejected)

Source: meteociel.fr
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Multivariate optimization (single objective)

Over multidimensional para-
meter spaces, minimization by 
“descent” becomes steepest 
descent, whereas maximiza-
tion by ascent becomes 
steepest ascent.

In addition to the step size, 
determined by δ and regula-
ted by α in our codes, a direc-
tion needs to be determined.

The direction of steepest de-
scent is perpendicular to lines 
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Multivariate optimization (single objective)

Over multidimensional para-
meter spaces, minimization by 
“descent” becomes steepest 
descent, whereas maximiza-
tion by ascent becomes 
steepest ascent.

In addition to the step size, 
determined by δ and regula-
ted by α in our codes, a direc-
tion needs to be determined.

The direction of steepest de-
scent is perpendicular to lines 
of constant cost (or utility).

point 0

point 1
refined δ

point 3

Source: meteociel.fr

Note

If we have formulated this as a minimization 
problem (i.e., the objective is a cost function),

opt.minimize(cost_function, initial_value, …)

from scipy can be employed to determine the 
optimal choice for all the parameters.
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Multivariate optimization (single objective)

Evaluate the objective function at
a set of equidistant points on a
grid, covering the whole para-
meter space (or the relevant part).

Challenge: The uniform-grid 
method explodes exponentially
in terms of the number of 
parameters. For n parameters
with at least two values each,
2n points need to be evaluated.

In case of high-dimensional para-
meter spaces, randomized algo-
rithms are often used to select 
test points for global optimization.

Reminder

Local minimization leads 
to a local minimum, not 
necessarily to the global 

minimum.

This depends on the initial 
value. For challenging 

problems, it is advisable to 
obtain a good initial value 
first, by applying a global 

optimization scheme.
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Problems with a single objective

A single maximization objective can be referred to as the utility (function).
If the single objective is to be minimized, it can be called the cost (function).

utility or cost

single
parameter

multivariate 
optimization

y

x

Parameters: Quantites that are part of the solution and directly in your control.

Objectives: Quantities that should become as small (or as large) as possible, 
but can be influenced only indirectly, through a good choice of parameters.

done √

done √
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Types of optimization problems

Is there one parameter, or are there multiple parameters?
Is there one objective, or are there multiple objectives?

multicriteria (MCO)utility or cost

single
parameter

multivariate 
optimization

y

x
§

Parameters: Quantites that are part of the solution and directly in your control.

Objectives: Quantities that should become as small (or as large) as possible, 
but can be influenced only indirectly, through a good choice of parameters.
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Formalization of optimization problems

parameter x0

parameter x 1p
ar

am
et

er
 x

2

objective y0

objective y 1

o
b

je
ct

iv
e 

y 2

parameter space objective space

point x = [x0, x1, x2] 
in parameter space

In general, there can be any number m of parameters (m-dimensional para-
meter space) and any number n of objectives (n-dimensional objective space).
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Formalization of optimization problems

parameter x0

parameter x 1p
ar

am
et

er
 x

2

objective y0

objective y 1

o
b

je
ct

iv
e 

y 2

parameter space objective space

point x = [x0, x1, x2] 
in parameter space

point y = f (x) = [y0, y1, y2] 
in objective space

In general, there can be any number m of parameters (m-dimensional para-
meter space) and any number n of objectives (n-dimensional objective space).

The optimization problem is defined by a function f that maps a list of para-
meters x = [x0, …, xm–1] to the outcome for the objectives y = f (x) = [y0, …, yn–1].
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Formalization of optimization problems

parameter x0

parameter x 1p
ar

am
et

er
 x

2

objective y0

objective y 1

objective y2parameter space objective space

x
f (x)

Design choices are made by selecting a point in parameter space, but they are 
evaluated in objective space, by comparing the outcomes for y0, …, yn–1.

The optimization problem is defined by a function f that maps a list of para-
meters x = [x0, …, xm–1] to the outcome for the objectives y = f (x) = [y0, …, yn–1].

x’

f (x’)
x’’

f (x’’)
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Formalization of optimization problems

parameter x0

parameter x 1p
ar

am
et

er
 x

2

objective y0

objective y 1

objective y2parameter space objective space

x
f (x)

Design choices are made by selecting a point in parameter space, but they are 
evaluated in objective space, by comparing the outcomes for y0, …, yn–1.

The optimization problem is defined by a function f that maps a list of para-
meters x = [x0, …, xm–1] to the outcome for the objectives y = f (x) = [y0, …, yn–1].

x’

f (x’)
x’’

f (x’’)

Notation

By x, x’, and x’’ we here denote dif-
ferent possible parameter choices.

By f (x), f (x’), f (x’’) we denote the 
outcome in terms of the objectives. 
For this, we will also write y, y’, y’’.

(Not to be confused with first and 
second derivatives. This here are 

just different possible values.)
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Formalization of optimization problems

parameter x0

parameter x 1p
ar

am
et

er
 x

2

objective y0

objective y 1

objective y2parameter space objective space

x
f (x)

Design choices are made by selecting a point in parameter space, but they are 
evaluated in objective space, by comparing the outcomes for y0, …, yn–1.

The optimization problem is defined by a function f that maps a list of para-
meters x = [x0, …, xm–1] to the outcome for the objectives y = f (x) = [y0, …, yn–1].

x’

f (x’)
x’’

f (x’’)

Terminology

The function f  that maps points x in 
parameter space to points f (x) = y 

in objective space can still be called 
a cost function if all the criteria are 

minimization objectives.

It is called a utility function if all the 
criteria are maximization objectives.
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Multiple parameters

Evaluate the objective function at
a set of equidistant points on a
grid, covering the whole para-
meter space (or the relevant part).

Challenge: The uniform-grid 
method explodes exponentially
in terms of the number of 
parameters. For n parameters
with at least two values each,
2n points need to be evaluated.

In case of high-dimensional para-
meter spaces, randomized algo-
rithms are often used to select 
test points for global optimization.

Observation

The size of the parameter space (e.g., the 
number of points on a grid) increases 

exponentially with its dimension, i.e., with the 
number of parameters. It can be very 

computationally expensive to explore high-
dimensional parameter spaces.
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Multiple parameters

Evaluate the objective function at
a set of equidistant points on a
grid, covering the whole para-
meter space (or the relevant part).

Challenge: The uniform-grid 
method explodes exponentially
in terms of the number of 
parameters. For n parameters
with at least two values each,
2n points need to be evaluated.

In case of high-dimensional para-
meter spaces, randomized algo-
rithms are often used to select 
test points for global optimization.

Observation

The size of the parameter space (e.g., the 
number of points on a grid) increases 

exponentially with its dimension, i.e., with the 
number of parameters. It can be very 

computationally expensive to explore high-
dimensional parameter spaces.

It helps to restrict the problem description to 
the parameters that have the most significant 
influence on the outcome, neglecting others.

Where it is possible to express the best choice 
for one parameter xi as a function of the value 

of other parameters, xi = g(xj, xk, …), that 
should be done; xi can then be discarded.
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Multiple parameters

Evaluate the objective function at
a set of equidistant points on a
grid, covering the whole para-
meter space (or the relevant part).

Challenge: The uniform-grid 
method explodes exponentially
in terms of the number of 
parameters. For n parameters
with at least two values each,
2n points need to be evaluated.

In case of high-dimensional para-
meter spaces, randomized algo-
rithms are often used to select 
test points for global optimization.
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Multicriteria
optimization (MCO)



1926th October 2021CO3519

Multiple objectives

Song by Walther von der Vogelweide (~ 1200)

Diu wolte ich gerne in einen schrîn.
Jâ leider des enmac niht sîn,
daz guot und weltlich êre
und gotes hulde mêre
zesamene in ein herze komen. 

These I would like to have in one box.
But sadly that may not be,
that goods and worldly honour,
and God's grace additionally,
come together in a single heart.
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Multiple objectives

Song by Walther von der Vogelweide (~ 1200)

Diu wolte ich gerne in einen schrîn.
Jâ leider des enmac niht sîn,
daz guot und weltlich êre
und gotes hulde mêre
zesamene in ein herze komen. 

These I would like to have in one box.
But sadly that may not be,
that goods and worldly honour,
and God's grace additionally,
come together in a single heart.

Observation

Formulating multiple objectives only makes sense 
when they are opposed to each other, at least to 
some extent. Otherwise, they can be fused into a 
single cost function (or a single utility function).

For use in optimization and decision support, it 
must be possible to evaluate the objectives (at 

least qualitatively, better quantitatively) in a well-
defined way (SMART objectives and KPIs). 
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Multiple objectives

Song by Walther von der Vogelweide (~ 1200)

Diu wolte ich gerne in einen schrîn.
Jâ leider des enmac niht sîn,
daz guot und weltlich êre
und gotes hulde mêre
zesamene in ein herze komen. 

These I would like to have in one box.
But sadly that may not be,
that goods and worldly honour,
and God's grace additionally,
come together in a single heart.

Observation

Formulating multiple objectives only makes sense 
when they are opposed to each other, at least to 
some extent. Otherwise, they can be fused into a 
single cost function (or a single utility function).

For use in optimization and decision support, it 
must be possible to evaluate the objectives (at 

least qualitatively, better quantitatively) in a well-
defined way (SMART objectives and KPIs). 

This often requires models: a) a model of the out-
come, in terms of objectives; b) a model of possi-
ble courses of action, expressible by parameters; 
c) a function that maps parameters to objectives.
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Multiple objectives: Walther’s example

List of SMART objectives

1) My income will increase by at least 10% per
    year over each of the coming five years.

2) I will be invited to perform for the Bishop of
    Passau at least once a year over each of the
    coming five years.

3) I will give at least 10% of my income to the
    poor in each of the coming five years.

The list of SMART objectives is not directly 
very suitable for optimization. Why not?
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Multiple objectives: Walther’s example

List of key performance indicators (KPIs)

1) Annual increase of income, to be determined
    on an annual basis; target: all ≥ 10%.

2) Invited gigs at Passau, per year (five values);
    target: all ≥ 1.

3) Share of income given to the poor, to be
    determined each year; target: all ≥ 10%.

The above are three quantifiable and measura-
ble objectives x0, x1, x2 (or fifteen, x0, ..., x14, if the 
yearly outcomes are considered separately).
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Multiple objectives: Walther’s example

List of key performance indicators (KPIs)

1) Annual increase of income, to be determined
    on an annual basis; target: all ≥ 10%.

2) Invited gigs at Passau, per year (five values);
    target: all ≥ 1.

3) Share of income given to the poor, to be
    determined each year; target: all ≥ 10%.

The above are three quantifiable and measura-
ble objectives x0, x1, x2 (or fifteen, x0, ..., x14, if the 
yearly outcomes are considered separately).

Observation

A well-formulated KPI 
together with a target 

value is usually suitable 
as a SMART objective.

For optimization, we 
need to rely on the KPIs.
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Multiple objectives: Walther’s example

List of key performance indicators (KPIs)

1) Annual decrease of income, to be deter-
    mined on an annual basis; target: all ≤ –10%.

2) Invited gigs at Passau, per year (five values),
    multiplied by the factor –1; target: all ≤ –1.

3) Share of income not given to the poor, to be
    determined each year; target: all ≤ 90%.

The above are now given as three minimization 
objectives x0, x1, x2 (or fifteen, x0, ..., x14, if the 
yearly outcomes are considered separately).
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Multiple objectives: Walther’s example

List of key performance indicators (KPIs)

1) Annual decrease of income, to be deter-
    mined on an annual basis; target: all ≤ –10%.

2) Invited gigs at Passau, per year (five values),
    multiplied by the factor –1; target: all ≤ –1.

3) Share of income not given to the poor, to be
    determined each year; target: all ≤ 90%.

The above are now given as three minimization 
objectives x0, x1, x2 (or fifteen, x0, ..., x14, if the 
yearly outcomes are considered separately).

Observation

Can we now run 
opt.minimize() and do a 
numerical minimization?

No? Why not – what 
would we need that is 

missing?
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Parameters & objectives: Investment example

In the investment-decision example from multivar, we specified three para-
meters i, p, and d. However, in the underlying model, the amount of goods p 
that can be produced without external manufacturers is given by a function
p = g(i) of the value i. This might be simplified to a two-parameter problem.
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Parameters & objectives: Investment example

A single-objective cost function was 
given. However, the evaluation spe-
cifies multiple contributions to it.

It may make sense to distinguish 
two objectives: Minimize proper 
costs, and maximize sales income.
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Formalization of optimization problems

parameter x0

parameter x 1p
ar

am
et

er
 x

2

objective y0

objective y 1

objective y2parameter space objective space

x
f (x)

Design choices are made by selecting a point in parameter space, but they are 
evaluated in objective space, by comparing the outcomes for y0, …, yn–1.

The optimization problem is defined by a function f that maps a list of para-
meters x = [x0, …, xm–1] to the outcome for the objectives y = f (x) = [y0, …, yn–1].

x’

f (x’)
x’’

f (x’’)
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Formalization of optimization problems

parameter x0

parameter x 1p
ar

am
et

er
 x

2

objective y0

objective y 1

objective y2parameter space objective space

x
y = f (x)

Design choices are made by selecting a point in parameter space, but they are 
evaluated in objective space, by comparing the outcomes for y0, …, yn–1.

How are the design choices evaluated? How can we compare y = f (x), y’ = f (x’), 
and y’’ = f (x’’), and decide which is better, when there are conflicting criteria?

x’

x’’
y’ = f (x’)

y’’ = f (x’’)
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Assessment of solutions using multiple criteria

Spider diagrams are often used to visualize points in objective space.

y0

y1

y2

y3

Assume that y0, y1, y2, and y3 
are all minimization objectives.6

4

2

y

y = [3, 2, 5, 4]

Each polygon in a 
spider diagram 
represents one 

point in objective 
space, in this case y.
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Assessment of solutions using multiple criteria

Spider diagrams are often used to visualize points in objective space.

y0

y1

y2

y3

Assume that y0, y1, y2, and y3 
are all minimization objectives.6

4

2

y
y’

y = [3, 2, 5, 4]

y’ = [4, 5, 6, 4]

Note: y and y’ perform equally 
in criterion y3, and in the three 
other criteria, y outperforms y’.

We say: y dominates y’. Since 
y’ is dominated, it cannot be a 
rational choice to select y’.
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Assessment of solutions using multiple criteria

Spider diagrams are often used to visualize points in objective space.

y0

y1

y2

y3

Assume that y0, y1, y2, and y3 
are all minimization objectives.6

4

2

y
y’

y’’

y = [3, 2, 5, 4]

y’ = [4, 5, 6, 4]

y’’ = [2, 3, 2, 6]

y is not dominated by any of the other 
points; it is better than y’ in three criteria, 
and better than y’’ in two criteria.

y’’ is not dominated by any of the other 
points; it is better than y’ in three criteria, 
and better than y in two criteria.
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An accessible point in objective space belongs to the Pareto front whenever it 
is not dominated by any other accessible point in objective space.

The Pareto front

Assume that there are two mi-
nimization objectives, y0 and y1.

objective y0

o
b

je
ct

iv
e 

y 1

objective space

y = [3, 2]

y’ = [4, 5]

y’’ = [2, 3]

1

1

0

accessible 
part of objec-

tive space
unaccessible 
part of objec-

tive space
Pareto front
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An accessible point in objective space belongs to the Pareto front whenever it 
is not dominated by any other accessible point in objective space.

The Pareto front

Assume that there are two mi-
nimization objectives, y0 and y1.

objective y0

o
b

je
ct

iv
e 

y 1

objective space

y = [3, 2]

y’ = [4, 5]

y’’ = [2, 3]

1

1

0

y’

y

y’’

accessible 
part of objec-

tive space
unaccessible 
part of objec-

tive space
Pareto front
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An accessible point in objective space belongs to the Pareto front whenever it 
is not dominated by any other accessible point in objective space.

The Pareto front

Assume that there are two mi-
nimization objectives, y0 and y1.

objective y0

o
b

je
ct

iv
e 

y 1

objective space

y = [3, 2]

y’ = [4, 5]

y’’ = [2, 3]

1

1

0

y’

y

y’’
dominates

domi-
nates

accessible 
part of objec-

tive space
unaccessible 
part of objec-

tive space

y and y’’ are rational
compromises between
the two objectives.

y’ is not, because it is
dominated by other
accessible points.

Pareto front



3726th October 2021CO3519

An accessible point in objective space belongs to the Pareto front whenever it 
is not dominated by any other accessible point in objective space.

A point y in objective space dominates another point y’ if there is at least one 
criterion by which y is better than y’, but no criterion by which y’ is worse. 
Consequently, if y is accessible, it can never be rational to select y’.

Not all points in objective space are accessible. A point y in objective space is 
accessible whenever there is a point x in parameter space such that f (x) = y.

Pareto optimality
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An accessible point in objective space belongs to the Pareto front whenever it 
is not dominated by any other accessible point in objective space.

A point y in objective space dominates another point y’ if there is at least one 
criterion by which y is better than y’, but no criterion by which y’ is worse. 
Consequently, if y is accessible, it can never be rational to select y’.

Not all points in objective space are accessible. A point y in objective space is 
accessible whenever there is a point x in parameter space such that f (x) = y.

Pareto optimal solutions are potential rational compromises between criteria.

Pareto optimality
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An accessible point in objective space belongs to the Pareto front whenever it 
is not dominated by any other accessible point in objective space.

A point y in objective space dominates another point y’ if there is at least one 
criterion by which y is better than y’, but no criterion by which y’ is worse. 
Consequently, if y is accessible, it can never be rational to select y’.

Not all points in objective space are accessible. A point y in objective space is 
accessible whenever there is a point x in parameter space such that f (x) = y.

To remember:
– The Pareto front is situated in objective space (not in parameter space).
– It contains all the accessible points that are not dominated.
– A solution x (i.e., a parameter choice, or a point in parameter space) is 

Pareto optimal if and only if y = f (x) is on the Pareto front.

Pareto optimality
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An accessible point in objective space belongs to the Pareto front whenever it 
is not dominated by any other accessible point in objective space.

A point y in objective space dominates another point y’ if there is at least one 
criterion by which y is better than y’, but no criterion by which y’ is worse. 
Consequently, if y is accessible, it can never be rational to select y’.

Not all points in objective space are accessible. A point y in objective space is 
accessible whenever there is a point x in parameter space such that f (x) = y.

To remember:
– The Pareto front is situated in objective space (not in parameter space).
– It contains all the accessible points that are not dominated.
– A solution x (i.e., a parameter choice, or a point in parameter space) is 

Pareto optimal if and only if y = f (x) is on the Pareto front.

Pareto optimality

Terminology

A solution or design choice x, i.e., a point in parameter 
space, is sometimes also called a parameterization. Strictly 

speaking, parameterization is the process of selecting x.

It is bad practice to say “the solution x is on the Pareto 
front,” since the Pareto front is situated in objective space. 

Instead, we say “the point f (x) is on the Pareto front.”

However, both x and f (x) may be called “Pareto optimal.”
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Example from research practice

Pareto front

Multidimensional objective space
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Example from research practice

δps / %

δρ
I  / 

%

δγ
 / 

%

2CLJQ molecular
models of carbon dioxide

Pareto front

Multidimensional objective space
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Resilient compromises between objectives

(Example: Two-criteria optimization of molecular models.)

A Pareto knee 
is a highly 
curved region 
on the Pareto 
front.
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Resilient compromises between objectives

The viability of models close to a Pareto knee is comparably resilient even
when priorities shift. Example: Two-criteria optimization of molecular models.

A Pareto knee 
is a highly 
curved region 
on the Pareto 
front.

In general, a 
systematic 
exploration
of the Pareto 
front is 
needed to find 
such regions.
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Terminology and
building a glossary
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