CO3519
 Artificial Intelligence

Decision support Overall utility (or cost)
 Visualization of decision making

Where opportunity creates success

Module overview

Upon successful completion of this module, a student will be able to:

1) Explain the theoretical underpinnings of algorithms and techniques specific to artificial intelligence;
2) Critically evaluate the principles and algorithms of artificial intelligence;
3) Analyse and evaluate the theoretical foundations of artificial intelligence and computing;
4) Implement artificial intelligence algorithms.
optimization
agents and decisions
```
game theory
```


Agents and decisions

On the field of agents and decisions, we will:

- Review common definitions of agency and knowledge-based intelligent agents;
- Discuss the use of Al in assisting human decision making;
- Consider philosophical issues pertaining to the field, such as explainable AI and epistemic opacity.
agents and decisions

reasoning and learning

knowledge representation
modelling

Decision support

Example decision-support scenario

1.2.3. Cost functions with more than two parameters

The multivar notebook defines a cost function for a hypothetical industrial operation; at planning and design stage, you have direct control over the following parameters:

- The investment i, done a single time, in units of $£$.
- The amount of goods p to be produced, in units of $£ /$ year.
- The depreciation period d (how long it is meant to operate), in units of years.

In the investment-decision example from multivar, we specified three parameters i, p, and d. However, in the underlying model, the amount of goods p that can be produced without external manufacturers is given by a function $p=g(i)$ of the value i. This might be simplified to a two-parameter problem.

Example decision-support scenario

1.2.3. Cost functions with more than two parameters

The multivar notebook defines a cost function for a hypothetical industrial operation; at planning and design stage, you have direct control over the following parameters:

- The investment i, done a single time, in units of $£$.
- The amount of goods p to be produced, in units of $£ /$ year.
- The depreciation period d (how long it is meant to operate), in units of years.

```
total investment
production volume
depreciation period d = 7 years
i = GBP 100000
p = GBP 1000000 per year
operating cost: GBP 102915.03 per year
depreciation: GBP 14285.71 per year
prod.cost: GBP 900000.0 per year
sales contrib.: GBP -1000000.0 per year
==
total deficit: GBP 17200.74 per year
```

A single-objective cost function was given. However, the evaluation specifies multiple contributions to it.

It may make sense to distinguish two objectives: Minimize proper costs, and maximize sales income.

Example decision-support scenario

In the pareto-front Jupyter Notebook, a version of this problem is given that expresses it with two parameters and two minimization objectives.

Two parameters ($m=2$):

- investment $i=x_{0}$
- depreciation period $d=x_{1}$

Two optimization criteria ($n=2$):

- expenses y_{0}
- contribution from sales y_{1} (that is, $-1 \times$ the income from sales)

The Jupyter Notebook contains code for constructing a Pareto front.

```
total investment
production volume
depreciation period
i = GBP 100000
p = GBP 1000000 per year
d = 7 years
```

```
operating cost: GBP 102915.03 per year
```

operating cost: GBP 102915.03 per year
depreciation: GBP 14285.71 per year
depreciation: GBP 14285.71 per year
prod.cost: GBP 900000.0 per year
prod.cost: GBP 900000.0 per year
sales contrib.: GBP -1000000.0 per year
sales contrib.: GBP -1000000.0 per year
==
==
total deficit: GBP 17200.74 per year

```
total deficit: GBP 17200.74 per year
```

A single-objective cost function was given. However, the evaluation specifies multiple contributions to it.

It may make sense to distinguish two objectives: Minimize proper costs, and maximize sales income.

Example decision-support scenario

Example decision-support scenario

Example decision-support scenario

Example decision-support scenario

Decision support systems

Example: European guidelines on business decision support systems (BDSS) for manufacturing relying on Al infrastructures based on materials modelling: ${ }^{1}$

Figure 4: BDSS generic workflow between level of business entities or stakeholders
${ }^{1}$ D. Dykeman et al., Guideline for Business Decision Support Systems (BDSS) for Materials Modelling, EMMC ASBL, 2020.

Reality-to-model "translation" in decision support

Example: European guidelines on business decision support systems (BDSS) for manufacturing relying on Al infrastructures based on materials modelling: ${ }^{1}$

Figure 4: BDSS generic workflow between level of business entities or stakeholders
${ }^{1}$ D. Dykeman et al., Guideline for Business Decision Support Systems (BDSS) for Materials Modelling, EMMC ASBL, 2020. ${ }^{2}$ P. Klein et al., Translation in Materials Modelling: Process and Progress, 2021.

Overall utility (or cost)

Overall utility or cost measure

When to reduce optimization criteria to a single utility or cost measure:

1) If multiple criteria are not found to be in a genuine conflict with each other, or the cases where they would come into conflict are not so relevant and can be neglected: Combine them, or select one of them.

Example: $B e$ a friend of A, and also of $B ;$ also, A and B are good friends.

Overall utility or cost measure

When to reduce optimization criteria to a single utility or cost measure:

1) If multiple criteria are not found to be in a genuine conflict with each other, or the cases where they would come into conflict are not so relevant and can be neglected: Combine them, or select one of them.

Example: Be a friend of A, and also of $B ;$ also, A and B are good friends.
In such a case, strategies may include:

- Neglecting all criteria with the exception of one, e.g. $f(\mathbf{x})=y_{1}$, where $\boldsymbol{y}=\left[y_{0}, y_{1}\right]$; since \boldsymbol{y}_{0} and \boldsymbol{y}_{1} are correlated, y_{0} is accounted for by y_{1}.
- Combining the two criteria, e.g., by a linear combination such as $f(\mathbf{x})=0.4 y_{0}+0.6 y_{1}$, such that y_{0} would contribute 40% and $y_{1} 60 \%$.

Overall utility or cost measure

When to reduce optimization criteria to a single utility or cost measure:

1) If multiple criteria are not found to be in a genuine conflict with each other, or the cases where they would come into conflict are not so relevant and can be neglected: Combine them, or select one of them.

Example: $B e$ a friend of A, and also of $B ;$ also, A and B are good friends.
2) At the moment of decision making, there can only be one criterion.

Example: Be friends with A, and with $B ;$ but A and B hate each other. At some point, the decision between A and B needs to be made.

Select a combination of the criteria based on your priorities, or analyse the Pareto front as a whole to find a solution that is particularly resilient.

Overall utility or cost measure

When to reduce optimization criteria to a single utility or cost measure:

1) If multiple criteria are not found to be in a genuine conflict with each other, or the cases where they would come into conflict are not so relevant and can be neglected: Combine them, or select one of them.

Example: $B e$ a friend of A, and also of $B ;$ also, A and B are good friends.
2) At the moment of decision making, there can only be one criterion.

Example: Be friends with A, and with $B ;$ but A and B hate each other. At some point, the decision between A and B needs to be made.
3) If you are a follower of utilitarianism in the British tradition, giving a measure for the "maximum overall good" a moral interpretation.

Linear combinations of optimization criteria

In a linear combination, multiple objectives $y_{0,} y_{1}, \ldots, y_{n-1}$ are fused to construct a single objective

$$
y=c_{0} y_{0}+c_{1} y_{1}+\ldots+c_{n-1} y_{n-1}
$$

where $c_{0}, c_{1}, \ldots, c_{n-1}$ are constant coefficients.

- For $y=0.3 y_{0}+0.4 y_{1}+0.3 y_{2^{\prime}}$ the objective y_{1} contributes 40% to the overall cost or utility function; the other criteria each contribute 30%.
- Multiplying the coefficients all by the same value has no effect on the optimization outcome; only the ratio between them is relevant.

With $y=3 y_{0}+4 y_{1}+3 y_{2}$, the contribution of y_{1} is still 40%, etc.

Linear combinations of optimization criteria

In a linear combination, multiple objectives $y_{0,} y_{1}, \ldots, y_{n-1}$ are fused to construct a single objective

$$
y=c_{0} y_{0}+c_{1} y_{1}+\ldots+c_{n-1} y_{n-1}
$$

where $c_{0}, c_{1}, \ldots, c_{n-1}$ are constant coefficients. Points in objective space with the same value for y are then all situated on a line; all these lines are parallel.

Linear combinations of optimization criteria

Nonlinear contributions to utility

The utility of money. (a) Empirical data for Mr. Beard over a limited range.
(b) A typical curve for the full range.

To a billionaire, $£ 10,000$ may not even be worth the effort of scheduling an appointment; another objective such as tranquility may be more valuable ...

Prerequisites for decision making by optimization

At decision-making stage, if numerical methods are to be applied at all, the problem needs to have been reduced to single-objective optimization.

Moreover, the cost function (or utility function) needs to be known, and any unknown quantities occurring in it must have been eliminated.

Decision making and the unknown

At decision-making stage, if numerical methods are to be applied at all, the problem needs to have been reduced to single-objective optimization.

Moreover, the cost function (or utility function) needs to be known, and any unknown quantities occurring in it must have been eliminated.

In reality, however, the outcome of a decision often depends on unknown quantities such as the weather, unpredictable social developments, or actions of an competitor; in a game, future moves of the opponent.

Approach: Treat the unknown quantities as random variables.

Expected utility (or cost)

The outcome of a decision often depends on unknown quantities:

$$
\mathbf{y}=f(\mathbf{x}, \mathbf{r})=f\left(x_{0}, x_{1}, \ldots, x_{m-1}, r_{0}, r_{1}, \ldots, r_{1-1}\right) \text {, where the } r_{i} \text { are unknown; }
$$

These quantities are neither in the decision maker's direct control (i.e., they are not parameters), nor are they influenced indirectly by the decision.

For purposes of decision making and decision support, unknown quantities can be treated as random variables whenever not the value itself, but at least a probability distribution $P(\mathbf{r})$ can be reasonably assumed. Then an expected utility function (or expected cost function) is obtained by averaging:

$$
\mathbf{y}=f(\mathbf{x})=\operatorname{expected} \text { value } E[f(\mathbf{x}, \mathbf{r})]=\sum_{\mathbf{r}} P(\mathbf{r}) f(\mathbf{x}, \mathbf{r}) .
$$

Expected utility (or cost)

The outcome of a decision often depends on unknown quantities:

$$
\mathbf{y}=f(\mathbf{x}, \mathbf{r})=f\left(x_{0}, x_{1}, \ldots, x_{m-1}, r_{0}, r_{1}, \ldots, r_{1-1}\right) \text {, where the } r_{i} \text { are unknown; }
$$

These quantities are neither in the decision maker's direct control (i.e., they are not parameters), nor are they influenced indirectly by the decision.

For purposes of decision making and decision support, unknown quantities can be treated as random variables whenever not the value itself, but at least a probability distribution $P(\mathbf{r})$ can be reasonably assumed. Then an expected utility function (or expected cost function) is obtained by averaging:

$$
\mathbf{y}=f(\mathbf{x})=\text { expected value } E[f(\mathbf{x}, \mathbf{r})]=\sum_{\mathbf{r}} P(\mathbf{r}) f(\mathbf{x}, \mathbf{r}) .
$$

There, the sum of all probabilities must add up to one: $\sum_{r} P(r)=1$.

Visualization of decision making

Decision trees

Decision trees with utility nodes ${ }^{1}$

Barber ${ }^{1}$ employs a more expressive notation for decision trees, where three kinds of elements can occur in any order from top to bottom:

rectangles represent
decisions (parameters) circles or ellipses represent unknown quantities
 diamonds contain contributions to utility

Figure 7.1: A decision tree containing chance nodes (denoted with ovals), decision nodes (denoted with rectangles) and utility nodes (denoted with diamonds).
${ }^{1}$ D. Barber, Bayesian Reasoning and Machine Learning, Cambridge Univ. Press, 2012.

Decision trees with random variables ${ }^{1}$

Barber ${ }^{1}$ employs a more expressive notation for decision trees, where three kinds of elements can occur in any order from top to bottom:

Party

rectangles represent decisions (parameters)

Rain
circles or ellipses can represent random variables

diamonds contain contributions to utility

Figure 7.1: A decision tree containing chance nodes (denoted with ovals), decision nodes (denoted with rectangles) and utility nodes (denoted with diamonds).

¹D. Barber, Bayesian Reasoning and Machine Learning, Cambridge Univ. Press, 2012.

Decision trees with random variables ${ }^{1}$

Evaluation of the example decision tree:
If I go to the party, it will rain (60% chance) or not rain (40\%); if it rains, utility is -100 , otherwise 500. The expected utility is: yes $\leftarrow 0.6 \cdot(-100)+0.4 \cdot 500=140$.

If I do not go, it will rain (60% chance) or not rain (40\%); if it rains, utility is 0 , otherwise 50. The expected utility is:
no $\leftarrow 0.6 \cdot 0+0.4 \cdot 50=20$.

Figure 7.1: A decision tree containing chance nodes (denoted with ovals), decision nodes (denoted with rectangles) and utility nodes (denoted with diamonds).
${ }^{1}$ D. Barber, Bayesian Reasoning and Machine Learning, Cambridge Univ. Press, 2012.

Decision trees with random variables ${ }^{1}$

Evaluation of the example decision tree:
If I go to the party, it will rain (60% chance) or not rain (40\%); if it rains, utility is -100 , otherwise 500. The expected utility is:
yes $\leftarrow 0.6 \cdot(-100)+0.4 \cdot 500=140$.
If I do not go, it will rain (60% chance) or not rain (40\%); if it rains, utility is 0 , otherwise 50. The expected utility is:
no $\leftarrow 0.6 \cdot 0+0.4 \cdot 50=20$.
Since utility must be maximized, I should go.
¹D. Barber, Bayesian Reasoning and Machine Learning, Cambridge Univ. Press, 2012.

Influence diagrams

Influence diagrams (also: decision networks) visualize how different quantities are connected to each other in a decision-making process.

D: Should I work on a doctorate?

A: Academic recognition measure I: Life income
U_{1}, U_{2} : Contributions to utility.
(Example based on Barber, Fig. 7.6)

Influence diagrams

Influence diagrams (also: decision networks) visualize how different quantities are connected to each other in a decision-making process.

Decision trees are only applicable to qualitative (discrete) decision making, such as yes/no choices. Influence diagrams are more general: They are also suitable for quantitative decision making based on continuous optimization.

Influence diagrams

Influence diagrams (also: decision networks) visualize how different quantities are connected to each other in a decision-making process.

Observation: Whereas a decision tree alone is enough to make a decision, an influence diagram visualizes a process by which quantities are evaluated. For the diagram to represent a valid process, it must not contain any cycles.

CO3519
 Artificial Intelligence

Decision support Overall utility (or cost)
 Visualization of decision making

Where opportunity creates success

