
Where opportunity creates success

CO3519
Artificial Intelligence

Decision support
Overall utility (or cost)
Visualization of decision making



22nd November 2021CO3519

Module overview

Upon successful completion of this module, a student will be able to:

1) Explain the theoretical underpinnings of algorithms and techniques 
specific to artificial intelligence;

2) Critically evaluate the principles and algorithms of artificial intelligence;
3) Analyse and evaluate the theoretical foundations of artificial 

intelligence and computing;
4) Implement artificial intelligence algorithms.
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Agents and decisions

On the field of agents and decisions, we will:

– Review common definitions of agency and 
knowledge-based intelligent agents;

– Discuss the use of AI in assisting human 
decision making;

– Consider philosophical issues pertaining 
to the field, such as explainable AI and 
epistemic opacity.
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Decision support
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Example decision-support scenario

In the investment-decision example from multivar, we specified three para-
meters i, p, and d. However, in the underlying model, the amount of goods p 
that can be produced without external manufacturers is given by a function
p = g(i) of the value i. This might be simplified to a two-parameter problem.
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Example decision-support scenario

A single-objective cost function was 
given. However, the evaluation spe-
cifies multiple contributions to it.

It may make sense to distinguish 
two objectives: Minimize proper 
costs, and maximize sales income.
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Example decision-support scenario

A single-objective cost function was 
given. However, the evaluation spe-
cifies multiple contributions to it.

It may make sense to distinguish 
two objectives: Minimize proper 
costs, and maximize sales income.

In the pareto-front Jupyter Notebook, a version of this problem is given that 
expresses it with two parameters and two minimization objectives.

Two parameters (m = 2):
– investment i = x0

– depreciation period d = x1

Two optimization criteria (n = 2):
– expenses y0

– contribution from sales y1

(that is, –1× the income from sales)

The Jupyter Notebook contains code for constructing a Pareto front.
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Example decision-support scenario
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Example decision-support scenario
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Example decision-support scenario
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Example decision-support scenario
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Decision support systems

Example: European guidelines on business decision support systems (BDSS) 
for manufacturing relying on AI infrastructures based on materials modelling:1

1D. Dykeman et al., Guideline for Business Decision Support Systems (BDSS) for Materials Modelling, 
EMMC ASBL, 2020.
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Reality-to-model “translation” in decision support

Example: European guidelines on business decision support systems (BDSS) 
for manufacturing relying on AI infrastructures based on materials modelling:1

1D. Dykeman et al., Guideline for Business Decision Support Systems (BDSS) for Materials Modelling, 
EMMC ASBL, 2020. 2P. Klein et al., Translation in Materials Modelling: Process and Progress, 2021.
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Overall utility (or cost)
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When to reduce optimization criteria to a single utility or cost measure:

1) If multiple criteria are not found to be in a genuine conflict with each 
other, or the cases where they would come into conflict are not so 
relevant and can be neglected: Combine them, or select one of them.

Example: Be a friend of A, and also of B; also, A and B are good friends.

Overall utility or cost measure
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When to reduce optimization criteria to a single utility or cost measure:

1) If multiple criteria are not found to be in a genuine conflict with each 
other, or the cases where they would come into conflict are not so 
relevant and can be neglected: Combine them, or select one of them.

Example: Be a friend of A, and also of B; also, A and B are good friends.

Overall utility or cost measure

In such a case, strategies may include:

– Neglecting all criteria with the exception of one, e.g., f (x) = y1, where
y = [y0, y1]; since y0 and y1 are correlated, y0 is accounted for by y1.

– Combining the two criteria, e.g., by a linear combination such as
f (x) = 0.4 y0 + 0.6 y1, such that y0 would contribute 40% and y1 60%.
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When to reduce optimization criteria to a single utility or cost measure:

1) If multiple criteria are not found to be in a genuine conflict with each 
other, or the cases where they would come into conflict are not so 
relevant and can be neglected: Combine them, or select one of them.

Example: Be a friend of A, and also of B; also, A and B are good friends.

2) At the moment of decision making, there can only be one criterion.

Example: Be friends with A, and with B; but A and B hate each other.
At some point, the decision between A and B needs to be made.

Select a combination of the criteria based on your priorities, or analyse 
the Pareto front as a whole to find a solution that is particularly resilient.

Overall utility or cost measure
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When to reduce optimization criteria to a single utility or cost measure:

1) If multiple criteria are not found to be in a genuine conflict with each 
other, or the cases where they would come into conflict are not so 
relevant and can be neglected: Combine them, or select one of them.

Example: Be a friend of A, and also of B; also, A and B are good friends.

2) At the moment of decision making, there can only be one criterion.

Example: Be friends with A, and with B; but A and B hate each other.
At some point, the decision between A and B needs to be made.

3) If you are a follower of utilitarianism in the British tradition, giving a 
measure for the “maximum overall good” a moral interpretation.

Overall utility or cost measure
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In a linear combination, multiple objectives y0, y1, …, yn–1 are fused to construct 

a single objective

y   =  c0y0 + c1y1 + … + cn–1yn–1,

where c0, c1, …, cn–1 are constant coefficients.

– For y = 0.3 y0 + 0.4 y1 + 0.3 y2, the objective y1 contributes 40% to the 
overall cost or utility function; the other criteria each contribute 30%.

– Multiplying the coefficients all by the same value has no effect on the 
optimization outcome; only the ratio between them is relevant.

With y = 3 y0 + 4 y1 + 3 y2, the contribution of y1 is still 40%, etc.

Linear combinations of optimization criteria
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In a linear combination, multiple objectives y0, y1, …, yn–1 are fused to construct 

a single objective

y   =  c0y0 + c1y1 + … + cn–1yn–1,

where c0, c1, …, cn–1 are constant coefficients. Points in objective space with the 

same value for y are then all situated on a line; all these lines are parallel.

Linear combinations of optimization criteria
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Linear combinations of optimization criteria

objective space

accessible

Pareto front

If y is a linear combination of the 
objectives, points in objective 
space with the same value for y 
are situated on a line; all such 
lines are parallel. The optimum 
with respect to y is given by the 
tangent to the Pareto front.

y = y
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1  = –1 m
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Linear combinations of optimization criteria

objective space

accessible

Pareto front

If y is a linear combination of the 
objectives, points in objective 
space with the same value for y 
are situated on a line; all such 
lines are parallel. The optimum 
with respect to y is given by the 
tangent to the Pareto front.

y = y
0  + 2y

1  = –3 million

unaccessible

y = y
0  + 2y

1  = –2 million
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Linear combinations of optimization criteria

objective space

accessible

Pareto front

If y is a linear combination of the 
objectives, points in objective 
space with the same value for y 
are situated on a line; all such 
lines are parallel. The optimum 
with respect to y is given by the 
tangent to the Pareto front.

y = y
0  + 2y

1  = –5 million
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0  + 2y

1  = –2
y = y
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1  = –0.5

direction
1y0 + 2y1

direction
1y0 + 1y1

The sets of constant value are per-
pendicular to the direction (vector) 
indicated by the coefficients. This 
also applies to the tangents.
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Linear combinations of optimization criteria

objective space

accessible

Pareto front

If y is a linear combination of the 
objectives, points in objective 
space with the same value for y 
are situated on a line; all such 
lines are parallel. The optimum 
with respect to y is given by the 
tangent to the Pareto front.

y = y
0  + 2y

1  = –5 million

unaccessible

y = y
0  + 2y

1  = –4 million

y = y
0  + 2y

1  = –2
y = y

0  + y
1  = –0.5

direction
1y0 + 2y1

direction
1y0 + 1y1

The sets of constant value are per-
pendicular to the direction (vector) 
indicated by the coefficients. This 
also applies to the tangents.

In 2D, the tangents and the 
constant-value sets are lines; 
in 3D, planes; in n dimensions, 
they are n–1 dimensional.
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Nonlinear contributions to utility

(Russell & Norvig, Fig. 15.2)

To a billionaire, £10,000 may not even be worth the effort of scheduling an 
appointment; another objective such as tranquility may be more valuable …
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Prerequisites for decision making by optimization

At decision-making stage, if numerical methods are to be applied at all, the 
problem needs to have been reduced to single-objective optimization.

Moreover, the cost function (or utility function) needs to be known, and any 
unknown quantities occurring in it must have been eliminated.
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Decision making and the unknown

At decision-making stage, if numerical methods are to be applied at all, the 
problem needs to have been reduced to single-objective optimization.

Moreover, the cost function (or utility function) needs to be known, and any 
unknown quantities occurring in it must have been eliminated.

In reality, however, the outcome of a 
decision often depends on unknown 
quantities such as the weather, un-
predictable social developments, or 
actions of an competitor; in a game, 
future moves of the opponent.

Approach: Treat the unknown 
quantities as random variables.
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The outcome of a decision often depends on unknown quantities:

y  =  f (x, r)  =  f (x0, x1, …, xm–1, r0, r1, …, rl–1), where the ri are unknown;

These quantities are neither in the decision maker’s direct control (i.e., they 
are not parameters), nor are they influenced indirectly by the decision.

For purposes of decision making and decision support, unknown quantities 
can be treated as random variables whenever not the value itself, but at least a 
probability distribution P(r) can be reasonably assumed. Then an expected 
utility function (or expected cost function) is obtained by averaging:

y  =  f (x)  =  expected value E[ f (x, r) ]  =  ∑ r P(r) f (x, r).

Expected utility (or cost)
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The outcome of a decision often depends on unknown quantities:

y  =  f (x, r)  =  f (x0, x1, …, xm–1, r0, r1, …, rl–1), where the ri are unknown;

These quantities are neither in the decision maker’s direct control (i.e., they 
are not parameters), nor are they influenced indirectly by the decision.

For purposes of decision making and decision support, unknown quantities 
can be treated as random variables whenever not the value itself, but at least a 
probability distribution P(r) can be reasonably assumed. Then an expected 
utility function (or expected cost function) is obtained by averaging:

y  =  f (x)  =  expected value E[ f (x, r) ]  =  ∑ r P(r) f (x, r).

There, the sum of all probabilities must add up to one:  ∑ r P(r)  =  1.

Expected utility (or cost)
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Visualization of
decision making
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Decision trees

(Russell & Norvig, Fig. 19.3)



322nd November 2021CO3519

Barber1 employs a more expressive notation for 
decision trees, where three kinds of elements 
can occur in any order from top to bottom:

Decision trees with utility nodes1

1D. Barber, Bayesian Reasoning and Machine Learning, Cambridge Univ. Press, 2012.

Party

Rain

100

rectangles represent 
decisions (parameters)

circles or ellipses repre-
sent unknown quantities

diamonds contain 
contributions to utility
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Barber1 employs a more expressive notation for 
decision trees, where three kinds of elements 
can occur in any order from top to bottom:

Decision trees with random variables1

1D. Barber, Bayesian Reasoning and Machine Learning, Cambridge Univ. Press, 2012.

Party

Rain

100

rectangles represent 
decisions (parameters)

circles or ellipses can re-
present random variables

diamonds contain 
contributions to utility
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Decision trees with random variables1

1D. Barber, Bayesian Reasoning and Machine Learning, Cambridge Univ. Press, 2012.

Evaluation of the example decision tree:

If I go to the party, it will rain (60% chance) 
or not rain (40%); if it rains, utility is –100, 
otherwise 500. The expected utility is:

yes    0.6 · (–100) + 0.4 · 500  =  140.←

If I do not go, it will rain (60% chance) or not 
rain (40%); if it rains, utility is 0, otherwise 
50. The expected utility is:

no    0.6 · 0 + 0.4 · 50  =  20.←
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Decision trees with random variables1

1D. Barber, Bayesian Reasoning and Machine Learning, Cambridge Univ. Press, 2012.

Evaluation of the example decision tree:

If I go to the party, it will rain (60% chance) 
or not rain (40%); if it rains, utility is –100, 
otherwise 500. The expected utility is:

yes    0.6 · (–100) + 0.4 · 500  =  140.←

If I do not go, it will rain (60% chance) or not 
rain (40%); if it rains, utility is 0, otherwise 
50. The expected utility is:

no    0.6 · 0 + 0.4 · 50  =  20.←

Since utility must be maximized, I should go.

140

20
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Influence diagrams

Influence diagrams (also: decision networks) visualize how different quantities 
are connected to each other in a decision-making process.

(Example based on Barber, Fig. 7.6)

U2

U1D

A I
U1, U2: Contributions to utility.

D: Should I work on a doctorate?

A: Academic recognition measure
I: Life income



372nd November 2021CO3519

Influence diagrams

Decision trees are only applicable to qualitative (discrete) decision making, 
such as yes/no choices. Influence diagrams are more general: They are also 
suitable for quantitative decision making based on continuous optimization.

Influence diagrams (also: decision networks) visualize how different quantities 
are connected to each other in a decision-making process.

(Example based on Barber, Fig. 7.6)

U2

U1

U3C

D

A I
U1, U2, U3: Contributions to utility.

D: Should I work on a doctorate?
C: Should I found a consultancy?

A: Academic recognition measure
I: Life income
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Influence diagrams (also: decision networks) visualize how different quantities 
are connected to each other in a decision-making process.

Influence diagrams

Observation: Whereas a decision tree alone is enough to make a decision, 
an influence diagram visualizes a process by which quantities are evaluated. 
For the diagram to represent a valid process, it must not contain any cycles.

(Example based on Barber, Fig. 7.6)

U2

U1

U3C

D

A I
U1, U2, U3: Contributions to utility.

D: Should I work on a doctorate?
C: Should I found a consultancy?

A: Academic recognition measure
I: Life income
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