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Module structure

Upon successful completion of this module, a student will be able to:

1) Explain the theoretical underpinnings of algorithms and techniques 
specific to artificial intelligence;

2) Critically evaluate the principles and algorithms of artificial intelligence;
3) Analyse and evaluate the theoretical foundations of artificial 

intelligence and computing;
4) Implement artificial intelligence algorithms.
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Module structure

On the field of modelling, we will:

– Discuss the use of models in optimization and decision support;

– Apply optimization algorithms to model parameterization;

– Assess model quality by validation and testing.

optimization

uncertainty 
quantification

modelling

agents and 
decisions

game 
theory

knowledge 
representation

reasoning 
and learning



23rd November 2021CO3519

Dimensionality and
objective functions
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Specification of an MCO decision problem

Three elements need to be specified to facilitate multicriteria decision support:

1) The parameter space: What is it that can be varied and is in direct 
control (or to be assumed as being under direct control) of the decision 
maker? What quantities define that which is possible in the scenario?

The permitted range (+ any applicable constraints) need to be stated.

2) The objective space: What are our criteria? If numerical optimization with 
scipy is to be used, best expressed as minimization objectives.

3) The objective function – if all criteria are minimization objectives, this can 
be called a multicriteria cost function.
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Specification of an MCO decision problem

Three elements need to be specified to facilitate multicriteria decision support:

1) The parameter space: What is it that can be varied and is in direct 
control (or to be assumed as being under direct control) of the decision 
maker? What quantities define that which is possible in the scenario?

The permitted range (+ any applicable constraints) need to be stated.

2) The objective space: What are our criteria? If numerical optimization with 
scipy is to be used, best expressed as minimization objectives.

3) The objective function – if all criteria are minimization objectives, this can 
be called a multicriteria cost function: This must actually be implemented 
as a function, in the sense that the term has in programming.
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Specification of an MCO decision problem

In general, all objectives y (taken together) are a function of all parameters x 
(taken together); or, equivalently, each objective yi is a function of the whole list 

or vector of parameters x = [x0, … xm-1].

As an influence diagram, this would look as follows:
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Specification of an MCO decision problem

In general, all objectives y (taken together) are a function of all parameters x 
(taken together); or, equivalently, each objective yi is a function of the whole list 

or vector of parameters x = [x0, … xm-1].

As an influence diagram, this would look as follows:

Required functional dependencies:

– y0(x0, x1, …, xm-1)

– y1(x0, x1, …, xm-1)

– …

– yn-1(x0, x1, …, xm-1)
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…

y0

y1

yn-1

…

A model for each of these will be needed.
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Specification of an MCO decision problem

In general, all objectives y (taken together) are a function of all parameters x 
(taken together); or, equivalently, each objective yi is a function of the whole list 

or vector of parameters x = [x0, … xm-1].

Required functional dependencies:

– y0(x0, x1, …, xm-1)

– y1(x0, x1, …, xm-1)

– …

– yn-1(x0, x1, …, xm-1)

A model for each of these will be needed.

Observation

Directly combining all 
variables complicates the 

process of constructing the 
objective function, often 
unnecessarily. It can help 
to introduce intermediate 
quantities, simplifying the 
structure of the problem 

so that no longer “all 
depends on all.”
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Specification of an MCO decision problem

It is convenient to implement the cost function according to this template:

def cost_function(x):
    [body of the cost function]
    return y

Therein, x is a list with m elements, x[0] to x[m-1]: The parameter values.

The return value y is a list with n elements, y[0] to y[n-1]: The outcomes.

This function must be an implementation of an algorithm that determines the 
outcomes for the optimization objectives for any given permitted parameters.

Then it can be passed on to scipy, e.g., using the wrappers from our notebooks.



1123rd November 2021CO3519

Specification of a MCO decision problem
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parameter space objective space

point x = [x0, x1, x2] 
in parameter space

point y = f (x) = [y0, y1, y2] 
in objective space

In general, there can be any number m of parameters (m-dimensional para-
meter space) and any number n of objectives (n-dimensional objective space).

The optimization problem is defined by a function f that maps a list of para-
meters x = [x0, …, xm–1] to the outcome for the objectives y = f (x) = [y0, …, yn–1].



1223rd November 2021CO3519

Dimensionality

parameter x0
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parameter space

point x = [x0, x1, x2] 
in parameter space

In general, there can be any number m of parameters (m-dimensional para-
meter space) and any number n of objectives (n-dimensional objective space).

By dimension of a space or set we mean the number of independent directions 
in which it is possible to move while remaining in the respective space or set.

first direction: e1 = [1, 0, 0]
second direction: e2 = [0, 1, 0]
third direction: e3 = [0, 0, 1]



1323rd November 2021CO3519

Dimensionality

parameter x0

parameter x 1p
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parameter space

point x = [x0, x1, x2] 
in parameter space

In general, there can be any number m of parameters (m-dimensional para-
meter space) and any number n of objectives (n-dimensional objective space).

By dimension of a space or set we mean the number of independent directions 
in which it is possible to move while remaining in the respective space or set.

first direction: e1 = [1, 0, 0]
second direction: e2 = [0, 1, 0]
third direction: e3 = [0, 0, 1]

Any fourth direction (mathematically, 
a vector) would be linearly depen-
dent on the above; i.e., it can be 
constructed as a linear combination:

[4, 3, 2] = 4e1 + 3e2 + 2e3
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Dimensionality
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point x = [x0, x1, x2] 
in parameter space

Another way of obtaining the dimension of a finite object is to rescale it by a 
factor c (e.g., double all lengths, c = 2) and evaluate how its total size changes.

If the dimension of the object is m, its size will change by the factor cm. For 
example, a cube increases its volume by factor 8 if all lengths double (c = 2).

first direction: e1 = [1, 0, 0]
second direction: e2 = [0, 1, 0]
third direction: e3 = [0, 0, 1]

Any fourth direction (mathematically, 
a vector) would be linearly depen-
dent on the above; i.e., it can be 
constructed as a linear combination:

[4, 3, 2] = 4e1 + 3e2 + 2e3
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Dimensionality in multicriteria optimization

parameter space
(all of which is accessible)

Pareto-optimal 

parameterizations

In general, a function has a domain and 
a range (also called codomain).

Any element of the domain is a valid ar-
gument. The function value (or return 
value) must be an element of the range.

objective space

accessible
part

unaccessible
part

Pareto front

y = f (x)

with x = [x0, x1, …, xm–1]
and y = [y0, y1, …, yn–1]

In our case, the parameter space 
is the domain and the objective 
space is the range/codomain.
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Dimensionality in multicriteria optimization

In general, a function has a domain and 
a range (also called codomain).

Any element of the domain is a valid ar-
gument. The function value (or return 
value) must be an element of the range.

objective space

accessible
part

unaccessible
part

Pareto front

y = f (x)

with x = [x0, x1, …, xm–1]
and y = [y0, y1, …, yn–1]

In our case, the parameter space 
is the domain and the objective 
space is the range/codomain.

The image of a function is that part 
of the range (codomain) consisting 
of the actually occurring function 
values, i.e., those that are obtained 
as f (x) for some x from the domain.

In our case, the image is the 
accessible part of objective space.
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Dimensionality in multicriteria optimization

What dimension do the spaces and sets have in multicriteria optimization?

● The dimension of the parameter space, defined by m independently 
variable parameters x0, …, xm–1, is exactly m, by construction.

● The objective space, defined over n criteria y0, …, yn–1, has dimension n.

● The accessible part of objective space (i.e., image of the objective function) 
cannot be higher-dimensional than the objective space as such. Therefore, 
its dimension q must satisfy q ≤ n. However, the image of a continuous 
function cannot be greater than that of its domain. Therefore, q ≤ m.
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Dimensionality in multicriteria optimization

What dimension do the spaces and sets have in multicriteria optimization?

● The dimension of the parameter space, defined by m independently 
variable parameters x0, …, xm–1, is exactly m, by construction.

● The objective space, defined over n criteria y0, …, yn–1, has dimension n.

● The accessible part of objective space (i.e., image of the objective function) 
cannot be higher-dimensional than the objective space as such. Therefore, 
its dimension q must satisfy q ≤ n. However, the image of a continuous 
function cannot be greater than that of its domain. Therefore, q ≤ m.

● The Pareto front in objective space must be lower-dimensional than 
objective space itself, due to the domination criterion; therefore, p ≤ n–1 
for its dimension p. But it must also all be accessible; therefore, p ≤ q ≤ m.
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Dimensionality in multicriteria optimization

● The dimension of the parameter space, defined by m independently 
variable parameters x0, …, xm–1, is exactly m, by construction.

● The objective space, defined over n criteria y0, …, yn–1, has dimension n.

● The accessible part of objective space (i.e., image of the objective function) 
cannot be higher-dimensional than the objective space as such. Therefore, 
its dimension q must satisfy q ≤ n. However, the image of a continuous 
function cannot be greater than that of its domain. Therefore, q ≤ m.

● The Pareto front in objective space must be lower-dimensional than 
objective space itself, due to the domination criterion; therefore, p ≤ n–1 
for its dimension p. But it must also all be accessible; therefore, p ≤ q ≤ m.

● The dimension p’ ≤ m of the Pareto-optimal region in parameter space 
must be at least the same as that of the Pareto front; hence, p ≤ p’ ≤ m.
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Example scenarios
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Example scenario #1a (Tutorial 1.2 problem)

Here, the accessible part of objective space was one-dimensional (q = 1).
There was no “Pareto front,” but a single optimal point (p’ = p = 0).

Three parameters (m = 3):

– investment i = x0

– depreciation period d = x1

– production volume p = x2

One optimization criterion (n = 1):

– total expected balance per year y

(inverted for minimization)
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Example scenario #1a (T1.2): Visualization

Here, the accessible part of objective space was one-dimensional (q = 1).
There was no “Pareto front,” but a single optimal point (p’ = p = 0).

Three parameters (m = 3):

– investment i = x0

– depreciation period d = x1

– production volume p = x2

One optimization criterion (n = 1):

– total expected balance per year y

Visualization of the scenario by 
Anzhi Wang (with d = 12 fixed)
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Example scenario #1b (industrial investment)

Here, the accessible part of objective space is two-dimensional (q = 2).
The set of Pareto-optimal choices and Pareto front are both 1D (p’ = p = 1).

Two parameters (m = 2):

– investment i = x0

– depreciation period d = x1

Two optimization criteria (n = 2):

– expenses y0

– contribution from sales y1

(that is, –1× the income from sales)
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Example scenario #1b: Visualization

parameter space
(all of which is accessible)

objective space

accessible
part

unaccessible
part

Pareto front
Pareto-optimal 

parameterizations

Here, the accessible part of objective space is two-dimensional (q = 2).
The set of Pareto-optimal choices and Pareto front are both 1D (p’ = p = 1).

Two parameters (m = 2):

– investment i = x0

– depreciation period d = x1

Two optimization criteria (n = 2):

– expenses y0

– contribution from sales y1

(that is, –1× the income from sales)
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Example scenario #1b: Influence diagram
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Example scenario #1b: Influence diagram
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Example scenario #1b: Influence diagram
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Example scenario #1b: Influence diagram
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Example scenario #2 (Caribbean)

Government might support a one-time investment into the university, of the 
order of 40 million sol., if the Grand Council can agree on a convincing plan 
how to spend it. You would like to present such a plan to the Grand Council.

Example parameters:
x0, x1, and x2)  Fractions of the one-time investment going into A, B, and C.

The share going into D is then given by 1 – x0 – x1 – x2.

3D parameter space, constraints: 0 ≤ x0, x1, x2 as well as x0 + x1 + x2 ≤ 1.

Example minimization objectives (3D objective space):
y0)  Decrease in research strength within five years, measured by citations

   to papers from our institution in the fifth year, compared to last year.
y1)  Others’ share in the real-estate sector five years from now, measured

   by the fraction of tenants within the city not living on our property.
y2)  Number of votes in the Grand Council against the plan.
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Example scenario #2 (Caribbean)

The accessible part of objective space was three-dimensional (q = 3).
The Pareto front was two-dimensional (p = 2).
The set of Pareto-optimal parameterizations was two-dimensional (p’ = 2).

Example parameters (3D parameter space, m = 3):
x0, x1, and x2)  Fractions of the one-time investment going into A, B, and C.

The share going into D is then given by 1 – x0 – x1 – x2.

3D parameter space, constraints: 0 ≤ x0, x1, x2 as well as x0 + x1 + x2 ≤ 1.

Example minimization objectives (3D objective space, n = 3):
y0)  Decrease in research strength within five years, measured by citations

   to papers from our institution in the fifth year, compared to last year.
y1)  Others’ share in the real-estate sector five years from now, measured

   by the fraction of tenants within the city not living on our property.
y2)  Number of votes in the Grand Council against the plan.
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Example scenario #2 (Caribbean): Visualization

investment into A investment into B investment into C

research KPI real-estate KPI internal support KPI
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Example scenario #2 (Caribbean): Influence diagram
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Example scenario #2 (Caribbean): Influence diagram
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Example scenario #2 (Caribbean): Influence diagram

x1
y1

y2

y0

x2

x0
funding 

for A

funding 
for B

funding 
for C

funding 
for D

fD

research KPI

real-estate KPI

internal support KPI

linear linear + constraint

remaining red arrows:
linear in square root of contributions to y0



3523rd November 2021CO3519

Example #3 from research practice

δps / %

δρ
I  / 
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δγ
 / 
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2CLJQ molecular models
of low-molecular fluids:

Objective space and Pareto front

The considered problem was from model 
optimization. The task was to parameterize 
models that accurately reflect physical 
behaviour.

Four model parameters, m = 4.

Three criteria (quantifying accuracy of pre-
dictions for three kinds of properties), n = 3.

Dimension of image of the objective function 
(accessible part of objective space), q = 3.

Dimension of the Pareto front, p = 2. 

Dimension of Pareto-optimal part of 
parameter space: p’ = 2.
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Example #3 from research practice: Visualization

Pareto-optimal 2CLJQ models for oxygen

objective
space

parameter
space

1K. Stöbener, P. Klein, M. Horsch, K. Küfer, H. Hasse, Fluid Phase Equilib. 411, 33 – 42, 2016.

Self-organized patch plots1 visualizing the Pareto front and the Pareto-optimal models:
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Example #3 from research practice: Visualization

Pareto-optimal 2CLJQ models for oxygen

objective
space

parameter
space

< 12%

 zero 
 quadrupole 

< 3.3 %

< 1%

1K. Stöbener, P. Klein, M. Horsch, K. Küfer, H. Hasse, Fluid Phase Equilib. 411, 33 – 42, 2016.

Self-organized patch plots1 visualizing the Pareto front and the Pareto-optimal models:



3823rd November 2021CO3519

Example #3 from research practice: Visualization

Pareto-optimal 2CLJ models satisfying all constraints

Self-organized patch plots1 visualizing the Pareto front and the Pareto-optimal models:

1K. Stöbener, P. Klein, M. Horsch, K. Küfer, H. Hasse, Fluid Phase Equilib. 411, 33 – 42, 2016.

objective
space

parameter
space
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Example #3: Underlying model (non-linear)

temperature / ε

 L* = 0.2
Q* = 1.41

 L* = 0.6
Q* = 1.41

 L* = 0.4
Q* = 2
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● Systematic exploration of the physically relevant part of the model parameter space
● Correlation of the 2LJCQ surface tension by critical-scaling expressions

2CLJQ

2 LJ Centres + Quadrupole
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Discussion

What problems are you 
finding when constructing 

a model cost function?

What is most challenging 
at specifying parameters 

and objectives?

What should we focus on 
in our discussion of 

modelling?
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Correlating data
(intro/discussion)
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Linear regression

 x

y

Any two points define the equation of a line, y = mx + b.

Two unknowns, exactly two data points by which the unknowns are eliminated.

This permits both interpolation and extrapolation. But how reliable are they?

interpolation
extrapolation

extrapolation
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Linear regression

y

 x

However, it is also possible to linearly correlate larger data sets.

Two unknowns, many more data points: Apparently overspecified.

Note that the points 
are not actually on 
the line.

Determining a linear regression (i.e., fit to data) is an optimization problem.

Usually the mean square deviation between the line and the data is minimized.
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Regression and reliability: Discussion

y

 x

The red line is exact for the two data points from which it was determined.
The orange line is inexact for all data points.

Why would we still rather prefer to rely on the orange line?

Determining a linear regression (i.e., fit to data) is an optimization problem.

Usually the mean square deviation between the line and the data is minimized.



4523rd November 2021CO3519

Regression and reliability: Discussion

y

 x

The red line is exact for the two data points from which it was determined.
The orange line is inexact for all data points.

Why would we still rather prefer to rely on the orange line?

The blue line is exact for all data points.

Would we rely on it for interpolation and/or extrapolation? If no, why not?

interpolation

extrapolation
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