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Pareto front visualization

We have seen two visualization techniques, the first of which is applicable for
2D parameter and objective spaces only - it may be extended to 3D if an
appropriate representation is used, e.g., one that permits rotating the spaces.
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Pareto front visualization

We have seen two visualization techniques. Using the second technique, each
parameter and each objective is shown in its own heat map. Only the Pareto
optimal solutions are shown; each solution corresponds to a field on the map.

& /%

&y/ %

objective
space
| Pareto-optimal 2CLJQ models for oxygen |
(e/k) / K Q/DA
~ parameter
' space

K. Stébener, P. Klein, M. Horsch, K. Kifer, H. Hasse, Fluid Phase Equilib. 411, 33 - 42, 2016.

C0O3519 30" November 2021 4



A

P University of
@ Central Lancashire
UCLan

Pareto front visualization: How to use the notebook

We have seen two visualization techniques. Using the second technique, each
parameter and each objective is shown in its own heat map. Only the Pareto
optimal solutions are shown; each solution corresponds to a field on the map.
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Example modelling problem

We have seen two visualization techniques. Using the second technique, each
parameter and each objective is shown in its own heat map. Only the Pareto
optimal solutions are shown; each solution corresponds to a field on the map.

The code from the pareto-front-visualization notebook is an ad-hoc creation.
We will now go through the changes that need to be made when using it.

Example modelling scenario (based on Katib Hussain’s case):

“The university has considered to upgrade workstations over the Christmas
holidays (2 weeks). Up to 600 workstations would need to be upgraded, but
for every ten workstations, a day’'s maintenance is required.”

"A large maintenance team with too little investment would reduce produc-
tivity and reduce the amount of workstation upgrades. Too much investment
with a small team would limit the use that can be made of the equipment.”

C0O3519 30" November 2021 6
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Example modelling problem (T2.1 discussion)

We have seen two visualization techniques. Using the second technique, each
parameter and each objective is shown in its own heat map. Only the Pareto
optimal solutions are shown; each solution corresponds to a field on the map.

The code from the pareto-front-visualization notebook is an ad-hoc creation.
We will now go through the changes that need to be made when using it.

Example modelling scenario (based on Katib Hussain’s case):

Minimization objectives:
— ¥, expenses of an upgrade/maintenance operation for workstations

— y,, number of workstations (out of 600) that do not receive an upgrade

“A large maintenance team with too little investment would reduce produc-
tivity and reduce the amount of workstation upgrades. Too much investment
with a small team would limit the use that can be made of the equipment.”

C0O3519 30" November 2021 7
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Example modelling problem (T2.1 discussion)

How to specify the parameter space: For each parameter, the range of
permitted values needs to be specified; including constraints, if applicable.

Here, maybe simply 0 < x,and 0 < x,.

Optional constraint, may be included explicitly or not: salary - x, < x.

Example modelling scenario (based on Katib Hussain’s case):

Minimization objectives:
— ¥, expenses of an upgrade/maintenance operation for workstations

— y,, number of workstations (out of 600) that do not receive an upgrade

Parameters:

— X,, expenses of an upgrade/maintenance operation for workstations

— X,, number of staff assigned to carry out the upgrade (within two weeks)

C0O3519 30" November 2021 8
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Example modelling problem (T2.1 discussion)

What dimension do we expect for the relevant spaces and sets?

— The parameter space (m = 2) and objective space (n = 2) are both 2D.
— The accessible part of objective space (g = 2) will probably be 2D.
— Pareto front (p = 1) and set of Pareto-optimal solutions (p’ = 1) are 1D.

Example modelling scenario (based on Katib Hussain’s case):

Minimization objectives:
— ¥, expenses of an upgrade/maintenance operation for workstations

— y,, number of workstations (out of 600) that do not receive an upgrade

Parameters:
— X, expenses of an upgrade/maintenance operation for workstations

— X, number of staff assigned to carry out the upgrade (within two weeks)

C0O3519 30" November 2021 9
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Example modelling problem (T2.1 discussion)

expenses | X

| \

staff | X >

—_—
linear + constraint

Objectives:

expenses

non-upgraded

workstations

—_—
identity

— ¥, expenses of an upgrade/maintenance operation for workstations

— y,, number of workstations (out of 600) that do not receive an upgrade

Parameters:

— X, expenses of an upgrade/maintenance operation for workstations

— X, number of staff assigned to carry out the upgrade (within two weeks)

C0O3519 30t November 2021
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Example modelling problem (T2.1 discussion)

expenses

staff

Objectives:

=)

quipment
acquired

>
linear + constraint

expenses

non-upgraded

workstations

—>
linear

—
identity

— ¥, expenses of an upgrade/maintenance operation for workstations

— y,, number of workstations (out of 600) that do not receive an upgrade

Parameters:

— X, expenses of an upgrade/maintenance operation for workstations

— X, number of staff assigned to carry out the upgrade (within two weeks)
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Example modelling problem (T2.1 discussion)

expenses | X

expenses

staff | X

equipment
e acquired

non-upgraded

workstations

Il
X

yO(XO) 0

eacq(XO’

CO3519

[ _1 —_—
linear + constraint linear identity

x,) = (x, - salary - x,) / unit_cost

y1(eacq, x,) = max(0, num_units - min(eacq, x,/fte_per_unit))

30t November 2021 12
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Example modelling problem (T2.1 discussion)

Reasonable estimates for the constant coefficients included in the model:

Yo(X,)

CO3519

num_units = 600, since 600 workstations require an upgrade.

salary = GBP 15,000, i.e., 1.0 FTE for two weeks for a technician. This is
strictly speaking not just the salary, it needs to include non-wage costs.

fte_per_unit = 0.01, since "for every ten workstations, a day’s mainten-
ance is required.” Hence, 1.0 FTE can fix 100 units in ten working days.

unit_cost = GBP 150, might be reasonable for a typical maintenance.

eacq(xo, x,) = (x, - salary - x,) / unit_cost

y1(eacq, x,) = max(0, num_units - min(eacq, x,/fte_per_unit))

30t November 2021 13
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Example modelling problem (T2.1 discussion)

Can this scenario be treated by multicriteria optimization?
Verify whether the optimization criteria are in mutual disagreement:

— Optimum with respect to y, only, ignoring y.:

No expenses, therefore also no staff allocated to the work (x, = x, = 0).

— Optimum with respect to y, only, ignoring y,: Any solution where all
workstations are upgraded. There, x, = num_units - fte_per_unit = 6.

Also, x, = num_units - unit_cost + x, - salary = GBP 180,000.

YolXo) = X,

Xy X,) = (x, - salary - x,) / unit_cost

eacq( 0’

y1(eacq, x,) = max(0, num_units - min(eacq, x,/fte_per_unit))

C0O3519 30" November 2021 14
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Example modelling problem (T2.1 discussion)

def cost_function(x):

expenses = x[0]
acquired_equipment = (x[0] - salary*x[1]) / unit_cost
upgraded_units = min(num_units, acquired_equipment, x[1]/fte_per_unit)

y = [expenses, num_units - upgraded_units]
returny
YolXp) = X,

e (x, x,)=(x,-salary - x,)/ unit_cost

acq( 0" "1

y1(eacq, x,) = max(0, num_units - min(eacq, x,/fte_per_unit))

C0O3519 30" November 2021 15
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How to use the p.v. notebook (T2.2 discussion)

def cost_function(x, debug_output):
if x[0] <0 orx[1] <1 orx[0] <salary*x[1]:
return [math.inf, math.inf]
expenses = x[0]
acquired_equipment = (x[0] - salary*x[1]) / unit_cost
upgraded_units = min(num_units, acquired_equipment, x[1]/fte_per_unit)

y = [expenses, num_units - upgraded_units]
returny

— Incell [1], replace the body of cost_function(x, debug_output).

— The constant coefficients need to be included.

— Itis advisable to implement a penalty for values outside the specified
parameter space, since scipy.optimize will not be aware of constraints.

C0O3519 30" November 2021 16
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How to use the p.v. notebook (T2.2 discussion)

def random_parameters():
max_expenses = num_units * (unit_cost + salary*fte_per_unit)

expenses = random.uniform(0, max_expenses)
total_labour_cost = random.uniform(0, expenses)

return [expenses, total_labour_cost/salary]

objective_scale = [180000, 600]
sigma = 2
— Incell [1], replace the body of cost_function(x, debug_output).
— In cell [2], edit random_parameters() such that it returns a random point
in parameter space, and objective_scale such that objective_scale[i] is
of the order of variations expected in the outcome for objective y[il.
Increase/decrease sigma if you want weights to vary more/less.
— Incells [4] and [6], adjust local and global optimizer settings.

C0O3519 30" November 2021 17
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How to use the p.v. notebook (T2.2 discussion)

In cell [6], adjust:
— number of parameters m and number of objectives n.

— number of points to be determined by linear combinations and by
hyperboxing, respectively; their sum should be a square number.

— linear combinations only work for a convex Pareto front: It can
happen that this part needs to be removed; in this case, the
lists objective_space_lower and objective_space_upper need

to be initialized appropriately.

— local and global optimizer settings.

C0O3519 30" November 2021 18
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How to use the p.v. notebook (T2.2 discussion)

In cell [8], select the axes to be shown for the 2D projection (here, 0 and 1).

sbn.scatterplot(x=pareto_optimal_compromises[0], \
\ y=pareto_optimal_compromises[1], color="#002855")
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How to use the p.v. notebook (T2.2 discussion)

In cell [10], set square_size to the square root of the number of determined
Pareto optimal solutions. Pass indices of the criteria for ordering (here, 0 and 1):

idx_order = arrange_indices(square_size, n, pareto_optimal_compromises, 0, 1)

Parameter x[0] Parameter x[1]

o 175000 o 8
5 150000 5
125000 s
X 100000 X
0 " . 1
75000
20 20
2
50000
expenses i} staff
25000
30 30
0 5 10 15 20 il 30

Objective y[0] Objective y[1]

» . g = non-upgraded
expenses = = = workstations
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Reanalysis of the problem (T2.1 discussion)

expenses

equipment
@ acquired

non-upgraded

workstations

expenses
staff
yo(Xo) =X

(S

acq

CO3519

—_— —— —_—
linear + constraint linear identity

(x, x,) = (x, - salary - x,) / unit_cost

y1(eacq, x,) = max(0, num_units - min(eacq, x/fte_per_unit))
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Reanalysis of the problem (T2.1 discussion)

expenses | X 0 expenses

non-upgraded

feasible workstations
upgrades
e —_ —»
linear + constraint linear identity

nupg(x) = x / (unit_cost + salary - fte_per_unit)

y1(nupg) = max(0, num_units - nupg)

C0O3519 30" November 2021 22
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Learning from data

Common aims in modelling are for a model (e.g., an objective function) to be

— quantitatively accurate, both for
— descriptions, i.e., it should reproduce the known data correctly,
— predictions, e.g., for interpolation and extrapolation from data.

— qualitatively accurate, i.e., it should correctly reflect the way in which
multiple variables relate to each other.
These expectations very roughly relate to the two main modes of reasoning:

— inductive reasoning, where conclusions are drawn from patterns in data
sets or statistics over data: This is what we here mean by “learning.”

— deductive reasoning, also just “reasoning,” where a premise (logically,
mathematically) implies the conclusion, which is thus rigorously proven.

C0O3519 30" November 2021 24
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Learning from data

Common aims in modelling are for a model (e.g., an objective function) to be

— quantitatively accurate, both for
— descriptions, i.e., it should reproduce the known data correctly,
— predictions, e.g., for interpolation and extrapolation from data.

Qualitative accuracy relies on theories, quantitative accuracy on empirical data.

These expectations very roughly relate to the two main modes of reasoning:

— inductive reasoning, where conclusions are drawn from patterns in data
sets or statistics over data: This is what we here mean by “learning.”

Deductive reasoning relies on theories, learning relies on empirical data.

C0O3519 30" November 2021 25
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Learning from data

Categorization of learning methods:

— Supervised learning, where an agent obtains input-output pairs directly
or indirectly from its percepts; e.g., lists x and y are taken from sensory

input, and a model f(x) =y____is constructed, aiming towardy____ =y.

The model function is not arbitrary, but based on a priori hypotheses.

The model quality can be assessed by validation and testing, i.e., by
evaluating how well the model predicts data on which it has not been trained.

C0O3519 30" November 2021 26
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Learning from data

Categorization of learning methods:

— Supervised learning, where an agent obtains input-output pairs directly
or indirectly from its percepts; e.g., lists x and y are taken from sensory
input, and a model f(x) =y____is constructed, aiming towardy____ =y.

The model function is not arbitrary, but based on a priori hypotheses.

— Unsupervised learning, where lists of variable values x, ..., x_are given

to the agent/algorithm without any a priori hypotheses. It is up to the
agent/algorithm to detect any patterns in the data set autonomously.

— Reinforcement learning, like the above, but with feedback on the
model quality provided to the agent at each iteration.

It is possible to combine these approaches, e.g., by providing some a priori hy-
potheses about how the world functions, but not enough for a complete model.

C0O3519 30" November 2021 27
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Learning from data by regression

Data are typically affected by noise, random error, fluctuations, and similar
phenomena that obscure to what extent variables are related to each other.

Regression analysis can help recover the correlations between variables.

This reduces to an optimization problem:

Minimize the mean square deviation
between the fit and the data points.

linear
(first order)

> X

This is also called an ordinary least squares (OLS) fit of a line to a data set.
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Learning from data by regression

Data are typically affected by noise, random error, fluctuations, and similar
phenomena that obscure to what extent variables are related to each other.

Regression analysis can help recover the correlations between variables.

y higher-order
parable polynomial
(second order)

linear
(first order)

> X

In supervised learning, the user specifies the type of model (i.e., the hypothesis).

C0O3519 30" November 2021 29
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Learning from data by linear regression

Data are typically affected by noise, random error, fluctuations, and similar
phenomena that obscure to what extent variables are related to each other.

Regression analysis can help recover the correlations between variables, and
it can state how probable it is that such an underlying relationship is actually
present, as opposed to just being noise. It can be used in any form of learning,
but is most effective as a supervised learning method.

The most straightforward, but nonetheless very powerful method for this
purpose is linear regression. As an example, we consider two data sets, each
generated by one of the following functions and affected by substantial noise:

f(x) = x3-10x?+ 1000 x
10,000

Ush

—
x

~—
Il
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Learning from data by linear regression

18000 | °
f(x) = x*-10x*+ 1000 x, with noise
160001  f (x) = 10,000, with noise
L ]
14000 1 .
>, 12000 1 .
L ] . ] . .
L ]
10000 { : . ) -
L]
8000, * .
[ ] * -
6000 1 .
8 9 10 11 12
X
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Learning from data by linear regression

18000 .
seaborn.regplot(x=x_dataset, y=y_dataset_a, order=1)

160001 seaborn.regplot(x=x_dataset, y=y_dataset_b, order=1)

14000 ;

19000 y =1550x-5000
> |

10000

8000

6000 o
8 9 10 11 12
X
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Is there a correlation or is it only noise?

imbort stai%modelé.api as sm

w N

x_array = sm.add constant(np.asarray(x_dataset))

5 linear fit a = sm.OLS(np.asarray(y dataset a), x array).fit() 7T 1550 x - 5000

6

7 print("Fit a):\n", linear_fit_a.summary())
Fit a):

OLS Regression Results
Dep. Variable: y - 0.574
Model: OLS Adj -squared 0.526
Method: Least Squares ~statistic: 1211
Date: Mon, 29 Nov 202 Prob (F-statistic): 0.00693
Time: :11738 Log-Likelihood: -99.816
No. Observations: 11 AIC: 203.6
Df Residuals: 9 BIC: 204.4
Df Model: 1
Covariance Ty nonrobust
coef std err t P>|t| [0.025 0.975]

const -4997.9028 4507 .307 -1.109 0.296 -1.52e+04 5198.333
x1 1549.5537 445.200 3.481 0.007 542.441 2556.666
Omnibus: \\\‘_,/// 5.158 Durbin-Watson: 1.606
Prob(Omnibus) : 0.076 Jarque-Bera (JB): 1722
Skew: -0.797 Prob(JB): 0.423
Kurtosis: 4.103 Cond. No. 65.4

C0O3519 30t November 2021
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Is there a correlation or is it only noise?

imbort stai%modelé.api as sm

w N

4 x array = sm.add _constant(np.asarray(x_dataset)) il B

5 linear fit a = sm.OLS(np.asarray(y dataset a), x array).fit() Y 1550 x - 5000

6

7 print("Fit a):\n", linear_fit_a.summary())
Fit a):

OLS Regression Results
Dep. Variable: y - 0.574
Model: OLS Adj -squared: 0.526
Method: Least Squares ~statistic: 1211
Date: Mon, 29 Nov 202 Prob (F-statistic): 0.00693
Time: :11738 Log-Likelihood: -99.816
No. Observations: 11 AIC: 203.6
Df Residuals: 9 BIC: 204.4
Df Model: 1
Covariance Ty nonrobust
coef std err t P>|t| [0.025 8.9751 .
---------------------------------------------------------------------------- 95% probability
const -4997.9028 4507 .307 -1.109 0.296 - : ; i
x1 1549.5537 445.200 3.481 0.007 542.441 2556.666 t,h?t the I|near Coef
\ i, ——— ficient is between

Omnibus: \/ 5.158 Durbin-Watson: 1.606 542 and 2560
Prob(Omnibus) : 0.076 Jarque-Bera (JB): 1722
Skew: -0.797 Prob(JB): 0.423
Kurtosis: 4.103 Cond. No. 65.4
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Is there a correlation or is it only noise?

imbort stai%modelé.api as sm

w N

4 x array = sm.add _constant(np.asarray(x_dataset)) il B
5 linear fit a = sm.OLS(np.asarray(y dataset a), x array).fit() Y 1550 x - 5000
6
7 print("Fit a):\n", linear_fit_a.summary()) if the variables
Fit a): are independent,
OLS Regression Results there is a 0.7%
Dep. Variable: y : 0.574 _ probability of arti-
Model: OLS Adj -squared: 0 .
Method: Least Squares ~statistic: f|C|a||y creating
Prob (F-statistic): (at least) such a

Date: Mon, 29 Nov 202
Time: :11738 Log-Likelihood:

. tron rrelation
No. Observations: 11 AIC: strong correlatio

Df Residuals: 9 BIC: by chance
Df Model: 1
Covariance TX < nonrobust o~

coef std err t P>|t| [0.025 8.9751 ° .
--------------------------------------------------------------------------- 95% probability
const -4997.9028 | 4507.307 -1.109 0.296 |- - : :
x1 1549 .5537 445.200 3.481 0.007 542.441 2556.666 ;E.hat the Igear Coef

: \ 4 ===xz===5 E-— —=== Ticlent is between

Omnibus: \/ 5.158 Durbin-Watson: 1.606 542 and 2560
Prob(Omnibus) : 0.076 Jarque-Bera (JB): 1722
Skew: -0.797 Prob(JB): 0.423
Kurtosis: 4.103 Cond. No. 65.4
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Is there a correlation or is it only noise?

Compare data set b), with no actual underlying correlation between x andy.

1 linear fit b = sm.OLS(np.asarray(y dataset b), x array).fit()

2 print("Fit b):\n", linear_fit_b.summary()) if the variables

Fit b): _ y =467 x + 5800 are independent,
OLS Regression Results there is a 28.9%

Dep. Variable: y R-squar 0.124 probability of arti-
Model: OLS Adj -squared: 0.0 - .
Method: Least Squares statistic: 1. f|C|a||y creating
Date: Mon, 29 Nov 2021~ Prob (F-statistic): (at least) such a

Time: 9 Log-Likelihood:

strong correlation

No. Observations: AIC:
Df Residuals: 9 BIC: by chance
Df Model: 1
Covariance Type: nonrobust

coef std err t : ° .
--------------------------------------------------------------------------- 95% probability
const 5801.8258 4193.444 1.384 84464 2 that the lin r _
x1 466.8272 414.199 1eS1257 a . € . €ar co
Omnibus: ©.210 Durbin-Watson: 1.045 _470 and +1400
Prob(Omnibus): 0.900 Jarque-Bera (JB): 0.143
Skew: 0.182 Prob(JB): 0.931
Kurtosis: 2.577 Cond. No. 65.4
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Is there a correlation or is it only noise?

Compare data set b), with no actual underlying correlation between x andy.

This quantity is called “the p value.” if the variables
are independent,

It indicates the probability of the same or a thers i;_?, 28'?%,
stonger apparent correlation between two probability ot arti-
: : ficially creating

variables (here, x and y), assuming that the

L (at least) such a
null hypothesis is true. sireng cerclaiion

by chance
Null hypothesis: There is no actual
underlying correlation between x and y.
Any appearance of such a correlation is 95% probability
due to chance. that the linear co-

efficient is between
470 and +1400
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Is there a correlation or is it only noise?

Compare data set b), with no actual underlying correlation between x andy.

This quantity is called “the p value.” if the variables
are independent,
there is a 28.9%

It indicates the probability of the same or a < ,
: probability of arti-
stonger apparent correlation between two Fo .

: . icially creating
variables (here, x and y), assuming that the

L (at least) such a
null hypothesis is true. sireng cerclaiion

by chance
Null hypothesis: There is no actual
underlying correlation between x and y.
Any appearance of such a correlation is 95% probability
due to chance. that the linear co-
efficient is between
By convention, correlations are typically -470 and +1400

seen as statistically insignificant if p > 5%.
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Is there a correlation or is it only noise?

There are many potential statistical fallacies or traps inherent in this issue.
Assume we are particularly rigorous and require the p value to be lower than a
level of significance of 0.01. That is, we only accept results that have a proba-
bility of 1% or less to have emerged by chance, given no actual correlation.

Now we instruct our high-throughput data analysis system to evaluate:

— Is there a correlation between avocado consumption and cancer? No.
— ... between liver disease and number of pets in the household? No.

(... about a hundred more questions ...)
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Is there a correlation or is it only noise?

Now we instruct our high-throughput data analysis system to evaluate:

— Is there a correlation between avocado consumption and cancer? No.
— ... between liver disease and number of pets in the household? No.

(... about a hundred more questions ...)
— ... between coronary disease and consumption of elk meat? Yes, p < 0.01.

Next month in an illustrated paper: Eat elk meat to avoid heart attacks!
A scientific study has proven ...
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