
DAT121 15. august 2023

Digitalisering på Ås

Institutt for datavitenskap

DAT121
Introduction to data science

1 Python basics

1.3 Python lists
1.4 Object references
1.5 Python libraries



2

Python example / performance comparison

def factorial_iterative(n):
product = 1
for i in range(2, n+1):

product *= i
return product

def factorial_recursive(n):
if 1 >= n:

return 1
else:

return n * factorial_recursive(n-1)

intro-performance-comparison.ipynb



3

Python’s built-in container data structures

One of the ways in which Python is unusual is what is built in, and what 
requires libraries. The default container data structure is a so-called “list.”

– The Python “list” is not what is usually called a list when discussing data 
structures and algorithms in computer science, namely, a linked list. 
Instead, the Python list is a dynamic array.
• x = [ -1/4, "avit", 121, [ "dat", 0 ], [ ] ]  # this is a list object
• x[3][0] + x[1]  # this is a valid way of using the list

– Python could be unique in that it does not natively support static arrays.



4

Python’s built-in container data structures

One of the ways in which Python is unusual is what is built in, and what 
requires libraries. The default container data structure is a so-called “list.”

– The Python “list” is not what is usually called a list when discussing data 
structures and algorithms in computer science, namely, a linked list. 
Instead, the Python list is a dynamic array.
• x = [ -1/4, "avit", 121, [ "dat", 0 ], [ ] ]  # this is a list object
• x[3][0] + x[1]  # this is a valid way of using the list

– Python could be unique in that it does not natively support static arrays.

dictionary

Lists are not the only container that is natively supported by Python:

– Dictionaries (what is otherwise also called a hash) map keys to values.
• dict = {key1: val1, key2: val2}

– Sets, which contain each element at most once.
– Tuples, i.e., immutable ordered collections of objects.



DAT121 15. august 2023

Digitalisering på Ås

Institutt for datavitskap

1 Python basics

1.3 Python lists



6

Static arrays

An array contains a sequence of elements of the same type, arranged 
contiguously in memory. This supports fast access using pointer arithmetics. 
Once created, the size of a C/C++ array is fixed; we cannot append elements.

In C/C++, the type of an array such as int[] is the same as the corresponding 
pointer type int*, i.e., the array actually is a pointer. Its value is an address at 
which an integer is stored, namely, the memory address of the first element.

This is highly efficient since when x[i] is accessed, the compiler transforms this 
into accessing the memory address x + sizeof(int) * i.

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &x[0] x + 3 = &x[3] x + 6 = &x[6]



7

Static arrays

An array contains a sequence of elements of the same type, arranged 
contiguously in memory. This supports fast access using pointer arithmetics.

In C/C++, the type of an array such as int[] is the same as the corresponding 
pointer type int*, i.e., the array actually is a pointer. Its value is an address at 
which an integer is stored, namely, the memory address of the first element.

In Python, we can use the numpy library in order to create a static array:

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

import numpy as np

x = np.array( [34, 1, 7, 12, 3, 4, 7, 12] )

static 
array



8

Lists in Python (dynamic arrays)

Conventional arrays are static data structures. Their size in memory is constant, 
and memory needs to be allocated only once, e.g., at declaration time. (Details 
depend on programming language, compiler, flags/optimization level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an 
array, this can be implemented by allocating reserve memory for any elements 
that may be appended in the future. When the capacity of the dynamic array is 
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12

x[0] x[1] x[2] x[3]

4

x = [34, 1, 7, 12]

Note: Reserve memory capacity is allocated.
Items are arranged contiguously in memory.

logical 
size is 4

free free

capacity is 6
in Python:

6

capacity is 6



9

Lists in Python (dynamic arrays)

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array: O(1) at the end, O(n) elsewhere.
All the elements with greater indices need to be shifted.

– Extending the array by one element? O(1) at the end, if there is capacity. 
O(n) elsewhere, or if the capacity of the dynamic array is exhausted.

34 7 12 3 4

x[0] x[1]

7 free freefree

x[2] x[3] x[4] x[5]

appending an element
will take constant time,

as long as there is capacity
6

logical 
size is 6

9

capacity is 9

dynamic 
array



10

Lists in Python: Examples

Lists in Python are implemented as dynamic arrays. Their elements behave in 
the same way as Python variables do in general: They are object references.

When a sublist x[i: j] is created from x, all the sublist elements are copied.

The behaviour above is closely tied to the use of object references in Python.

Q: What happens if these two 
lines are replaced with y[0] = [7]?



DAT121 15. august 2023

Digitalisering på Ås

Institutt for datavitskap

1 Python basics

1.3 Python lists
1.4 Object references



12

Definition: Argument passing is the process of handing over data items to a 

procedure (e.g., a function in Python) when that procedure is called.

● The free variables of a procedure are called parameters. In other words, parameters 

are the names of the variables passed to the function. Arguments are concrete values 

associated with the parameters at runtime.

● It is therefore more correct to speak of “argument passing” than "parameter passing," 

and that is also more common in English. In Norwegian, however, the expression with 

the word parameter (“parameteroverføring”) seems to be more common.

● Most languages provide “pass by value” or “pass by reference,” or both, as a 

mechanism. Pass by value means that the value of a data item is handed over directly, 

while in pass by reference, the procedure receives the memory address of that value.

● The argument passing mechanism in Python is called “pass by object

reference,” which means that an object reference is passed by value.

Argument passing (glossary)

argument 
passing



13

Pass by value and pass by reference

Two major ways in which arguments can be passed to functions are “by value,” 
where the function receives the value contained by the variable, and “by 
reference,” where the function receives the memory address of the variable.

Consider the following C/C++ code:

int metric(int a, int b)
{
   return (a - b) * (a - b);
}

…
int c;
c = metric(2, 5);

a and b are passed by value.

c is assigned the return value, which 

is also communicated by value.



14

Pass by value and pass by reference

Two major ways in which arguments can be passed to functions are “by value,” 
where the function receives the value contained by the variable, and “by 
reference,” where the function receives the memory address of the variable.

Compare the following more or less equivalent C/C++ codes:

int metric(int a, int b)
{
   return (a - b) * (a - b);
}

…
int c;
c = metric(2, 5);

void metric(int a, int b, int& distance)
{
   distance = (a - b) * (a - b);
}

…
int c;
metric(2, 5, c);

a and b are passed by value.

c is assigned the return value, which 

is also communicated by value.

a and b are passed by value.

c is passed by reference, and the function 

metric can access its memory address.



15

Pass by value and pass by reference

Two major ways in which arguments can be passed to functions:

Argument passing by value

Argument passing by reference

address 
&x

value
x

variable name “x”

address 
&y

value
y

variable name “y”initially, x ≡ 4 

finally, x ≡ 4 

initially, y ≡ 4 

y  5 ←

 &y is unrelated to &x

address 
&x

value
x

variable name “x”

address 
&y

value
y

variable name “y”initially, x ≡ 4 

finally, x ≡ 5 

initially, y ≡ &x, 
hence *y ≡ 4 

*y  5 ←



16

Pass by object reference

In Python, object references are passed by value (i.e., “pass by object reference”):

Argument passing by object reference in Python (similarly, in Java)

Argument passing by reference

address 
&x

value
x

object reference “x”

address 
&y

value
y

object reference “y”initially, x ≡ [ ]

finally, x ≡ [1] 

address 
&x

value
x

variable name “x”

address 
&y

value
y

variable name “y”initially, x ≡ 4 

finally, x ≡ 5 

initially, y ≡ &x, 
hence *y ≡ 4 

*y  5 ←

initially, &y ≡ &x, 
hence y ≡ [ ]

y.append(1)
y  [1, 2]←

function call f(x) assigning a new 
object to y changes 

the address!



17

Object reference (glossary)

Definition: A reference is an alias for data stored at a certain memory address. 
An object reference is a reference to an object; the memory address is hidden 
from the programmer, who can use the reference as if it was the object itself.

– Object-oriented programming languages usually distinguish between 
classes and elementary data types, and consequently between object 
variables (and their values, which are usually objects) and elementary 
variables (and their values, which are usually elementary data items).

• Not so in Python, where elementary data are objects as well.

– In languages that use references (or pointers), there is typically a 
distinction between the references/pointers, which hold a memory 
address, and normal variables which directly hold a value.

• Not so in Python, where every variable is an object reference.

object 
reference



18

In Python it is possible to assign an object reference to a function to a variable.

Functions as objects

def factorial_recursive(n):
if 1 >= n:

return 1
else:

return n * factorial_recursive(n-1)

def factorial_iterative(n):
product = 1
for i in range(2, n+1):

product *= i
return product

x = factorial_iterative
y = factorial_recursive
print( x(10) / y(8) )

90.0



19

In Python it is possible to assign an object reference to a function to a variable. 

This means that functions can also be passed as arguments to other functions.

One common use of this is during optimization, using scipy.opt.minimize:

Functions as objects

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html



DAT121 15. august 2023

Digitalisering på Ås

Institutt for datavitskap

1 Python basics

1.3 Python lists
1.4 Object references
1.5 Python libraries



21

In Python, it is very rare to write code without using any libraries at all.

The following ones are among the most important:

math: Contains e.g. functions like math.factorial() and constants like math.pi.

matplotlib: Used for simple diagrams; its figure and axis objects are used by 

other libraries as well. Discussed in Chapter 9 of Python for Data Analysis.

numpy: Functionalities that turn Python into a suitable replacement for Matlab, 

dealing efficiently with (static) arrays and matrices. (Chapter 4 in the book.)

pandas: Deals with data that are arranged as tables. (Chapter 5 in the book.)

scipy: Scientific computing functionalities, e.g., optimization and linear algebra.

seaborn: Library of choice for some frequently used kinds of plots.

statsmodels: Linear and non-linear regression and statistical data analysis.

Important libraries in Python



22

The following ones are among the most important:

math: Contains e.g. functions like math.factorial() and constants like math.pi.

matplotlib: Used for simple diagrams; its figure and axis objects are used by 

other libraries as well. Discussed in Chapter 9 of Python for Data Analysis.

numpy: Functionalities that turn Python into a suitable replacement for Matlab, 

dealing efficiently with (static) arrays and matrices. (Chapter 4 in the book.)

pandas: Deals with data that are arranged as tables. (Chapter 5 in the book.)

scipy: Scientific computing functionalities, e.g., optimization and linear algebra.

seaborn: Library of choice for some frequently used kinds of plots.

statsmodels: Linear and non-linear regression and statistical data analysis.

Relevant Python libraries for the semantic web include RDFlib and owlready2.

Important libraries in Python



23

numpy

We already saw that numpy can be used to create static arrays.
Frequent uses of numpy include:

– Multidimensional arrays, e.g., x = np.array( [ [1, 2, 3], [4, 5, 6] ] )
• Both for one- and multidimensional arrays, arithmetics can be 

carried out on an element-by-element basis, e.g., x = 1/x
• Additionally, many numpy functions operate over arrays

– Random numbers from np.random, e.g., uniformly distributed value 
between 0 and 1 obtained from np.random.random()

– Python’s range(init, limit, step) creates lists of equidistant integers. 
With np.arange(init, limit, step), an array is created instead, but more 
importantly, non-integer values can be used, which is often needed.

See Chapter 4 in Python for Data Analysis for an overview and code examples.



DAT121 15. august 2023

Digitalisering på Ås

Institutt for datavitskap

Conclusion



25

Python programming competency is relevant cross-sectionally in data science.

Related teaching activities

INF201: Advanced programming (5 credits, autumn term – Jonas Kusch)

The module builds on solid basic programming skills, using Python as the programming 

language. As a student in INF201, you write and improve code on your own throughout 

the autumn parallel. The module discusses techniques for debugging, optimization and 

benchmarking, testing and documentation, and scientific data processing. It introduces 

good practices for writing resilient object-oriented code and developing user interfaces.



26

Python programming competency is relevant cross-sectionally in data science.

Related teaching activities

INF201: Advanced programming (5 credits, autumn term – Jonas Kusch)

The module builds on solid basic programming skills, using Python as the programming 

language. As a student in INF201, you write and improve code on your own throughout 

the autumn parallel. The module discusses techniques for debugging, optimization and 

benchmarking, testing and documentation, and scientific data processing. It introduces 

good practices for writing resilient object-oriented code and developing user interfaces.

INF202: Advanced programming project (5 credits, January block – Jonas Kusch)

INF203: Advanced programming project (5 credits, June block – Jonas Kusch)

Programming competency can only be developed through sustained practice. The INF201 

and INF203 modules supplement the methodology-oriented modules INF201 (advanced 

programming) and INF205 (resource-efficient programming) by the required practice.



27

Related research and development activities

Python library development by NMBU data science and industrial economics:1

1https://github.com/olivertomic/hoggorm 

https://github.com/olivertomic/hoggorm


28

Related research and development activities

Python library development by NMBU data science and industrial economics:1, 2

1O. Tomic, T. Graff, K. H. Liland, T. Næs, J. Open Source Softw. 4(39): 980, doi:10.21105/joss.00980, 2019.
2https://github.com/olivertomic/hoggorm 

O. Tomic T. Graff K. H. Liland T. Næs

https://github.com/olivertomic/hoggorm


2915th August 2023DAT121

Glossary terms

Proposed glossary1 terms:

– How do we best define them? Is the definition controversial?
– What is the best translation into Norwegian bokmål and nynorsk?
– Are there more key concepts that would require an agreed definition?

1https://home.bawue.de/~horsch/teaching/dat121/glossary-en.html 

(specifically: pass by 
object reference)

(also: hash)(specifically: list data 
structure in Python)

static 
array

dynamic 
array

object 
reference

argument 
passing

dictionary

left open for
discussion

https://home.bawue.de/~horsch/teaching/dat121/glossary-en.html


DAT121 15. august 2023

Digitalisering på Ås

Institutt for datavitenskap

DAT121
Introduction to data science

1 Python basics

1.3 Python lists
1.4 Object references
1.5 Python libraries



3115th August 2023DAT121

Schedule for 14th and 15th August

Monday, 14th August 2023

09.30 informal meet-up
– 09.45* (in room TF2-323b)

10.00 lecture by Swati Aggarwal*
– 11.00* (in room TF1-205)

11.15 first lecture, welcome/Python
– 12.00 (in room TF1-201)

13.15 Data Science semester start
– 15.00 jointly with the 5-year Master

(in room TF1-115)

Tuesday, 15th August 2023

09.00 lecture by Alexander Stasik*
– 10.00* (in room TF1-205)

10.15 round of introductions
– 11.00 (in room TF1-201)

11.15 second lecture on Python
– 12.00

13.15 discussion about potential
– 14.00 DAT121 presentation topics

14.15 tutorial session (ctd.)
– 15.00

*not part of the official programme



3215th August 2023DAT121

Schedule for 17th and 18th August

Thursday, 17th August 2023 

09.15 discussion and Q&A
– 10.00

10.15 first lecture on data and objects
– 11.00

11.15 problem solving and/or
– 12.00 presentation by Kristian Liland

13.15 tutorial session
– 15.00

Friday, 18th August 2023  

09.15 discussion and Q&A
– 10.00

10.15 second lecture on data and objects
– 11.00

11.15 Fadi Al Machot’s presentation
– 12.00 on research and Master topics

The afternoon of 18th August is 
reserved for the immatriculation.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

