Norges miljg- og

e
biovitenskapelige
M

universitet

DAT121
Introduction to data science

2 Data and objects

2.1 Object-oriented programming in Python
2.2 Inheritance and class hierarchies
2.3 Conceptual modelling

DAT121 17. august 2023

Schedule for 17™ and 18™ August

Thursday, 17" August 2023

09.15 discussion and Q&A

-10.00 1.5 Python libraries

10.15 problem solving and start of

-11.00 first lecture on data and objects
2.1 OOP in Python

11.15 problem solving and continued

-12.00 firstlecture on data and objects
2.2 Inheritance
2.3 Conceptual modelling

13.15 tutorial session

-15.00

DAT121

— U
M

N —

Norwegian University
of Life Sciences

Friday, 18" August 2023

09.15 discussion and Q&A
-10.00
10.15 second lecture on data and objects
-11.00 2.4 Semantic interoperability
2.5 Knowledge graphs
2.6 Querying
11.15 Fadi Al Machot's presentation

-12.00 on research and Master topics

The afternoon of 18" August is

reserved for the immatriculation.

17" August 2023 2

r' J Norwegian University
- of Life Sciences

[] [] N ——
Programming paradigms
Imperative programming Programming paradigms based
— Itis stated, instruction by instruction, what on describing the solution
the processor should do rather than computational steps:

— Control flow implemented by jumps (goto)
Functional programming

Structured programming (also: “declarative programming”)
— Same, but with higher-level control flow
— Contains “instruction by instruction” code Constraint programming

Procedural programming _ .

— Functions (procedures) as highest-level Logic programming
structural unit of code

— Still contains loops, etc., for control flow

within a function

Object-oriented programming (OOP) » Generic programming
— Classes as highest-level structural unit of (introduces ideas from declarative
code; objects instantiate classes and logical methods into OOP)

— Still contains functions, e.g., as methods

DAT121 17" August 2023 3

r' J Norwegian University
- of Life Sciences

Recursion in procedural programming

Recursion is the process of defining the solution to a problem (or the solution
to a problem) in terms of a simpler or smaller instance of the same problem.

The base case (or a base
case) is reached when
the problem has been
simplified to the utmost

Image from: https://www.therussianstore.com/blog/the-history-of-nesting-dolls

Recursion is a form of decomposition:

solution(k) = recursive_step(solution(< k))

solution(L) = base_case_solution

DAT121 17" August 2023 4

http://www.therussianstore.com/blog/the-history-of-nesting-dolls

Recursion in procedural programming

Recursion is the process of defining the solution to a problem (or the solution
to a problem) in terms of a simpler or smaller instance of the same problem.

The base case (or a base
case) is reached when
the problem has been
simplified to the utmost

Multiple recursion
decomposes a problem
into more than one
simplified instance

Image from: https://www.therussianstore.com/blog/the-history-of-nesting-dolls

Recursion is a form of decomposition:

solution(k) = recursive_step(solution (< k), solution,(< k), ...))

solution(L) = base_case_solution

http://www.therussianstore.com/blog/the-history-of-nesting-dolls

Multiple recursion

The Fibonacci numbers constitute a mathematical sequence that is defined by
multiple recursion:

F, =0
F,o =1
Fo=F_ +F_, fork > 1 0,1,1,2,3,5 8,13, ...

While the definition is most conveniently given in the form of a recursion, the
numerical implementation would usually proceed by iteration. Compare the
code employing a Ioop with that obtained by a direct calque of the definition.

ok I\

k3k4k4—5 5

Multiple recursion: Dynamic programming

The Fibonacci numbers constitute a mathematical sequence that is defined by
multiple recursion:

F, =0
F,o =1
Fo=F_ +F_, fork > 1 0,1,1,2,3,5 8,13, ...

While the definition is most conveniently given in the form of a recursion, the
numerical implementation would usually proceed by iteration. Compare the
code employing a Ioop with that obtained by a direct calque of the definition.

>

ok I\ ‘i

k-3 k-4 k-4 —5 5 k-3 k-4

store and recall /
k (memoization) k-1 k-2
k-3

Noregs milj@- og

U
M BI I biovitskaplege

universitet

2 Python basics

2.1 Object-oriented Python

DAT121 17. august 2023

Programming paradigms

Imperative programming Programming paradigms based
— Itis stated, instruction by instruction, what on describing the solution
the processor should do rather than computational steps:

— Control flow implemented by jumps (goto)
Functional programming

Structured programming (also: “declarative programming”)
— Same, but with higher-level control flow
— Contains “instruction by instruction” code Constraint programming

Procedural programming , .

— Functions (procedures) as highest-level “EIEIE [PROEEINE
structural unit of code

— Still contains loops, etc., for control flow

within a function

Object-oriented programming (OOP) » Generic programming
— Classes as highest-level structural unit of (introduces ideas from declarative
code; objects instantiate classes and logical methods into OOP)

— Still contains functions, e.g., as methods

Why object orientation?

The job of variables is to store data. In object oriented programming (OOP)
the focus is on how data belong together and how we can facilitate safe and
correct access to data. How do data-centered tools (DBs, etc.) present data?

E | "L t Citi b city cityLabel population - country . countryLabel i
Xam p e: a rg est Cclties y Point(-79.386666666
Qwd:Q172 Toronto 2731571 Q wd:Q16 Canada 43 670277777)

country” query on Wikidata.

Qwd:Q1480 Tokyo 14047594 Qwd:Q17 Japan Point(139.691722222

35 689555555)
Qwd:0585 Oslo 693494 Qwd:Q20 Norway :;’f;?;;gg;%m
Qwd:Q1761 Dublin 553165 Qwd:Q27 Republic of Ireland Z;";}fg’;j:; 2227)7"7

Q wd:Q1781 Budapest 1723836 Q wd:Q28 Hungary 5;':::;33‘;032?3333
Qwd:Q2807 Madrid 3305408 Qwd:Q29 Spain sgf::(:‘sgg:;)

Q wd:060 New York City 8804180 Q wd:030 ::Z‘i’cas'a“ ot Point(-74.0 40.7)

Q wd:Q240 g:;:?scmnm 1218255 Qwd:Q31 Belgium :gf;ff:gﬁi;)
Qwd:Q1842 Luxembourg 128512 Qwd:Q32 Luxembourg :;IE:(SSL?;Z???
Qwd:Q1757 Helsinki 643272 Qwd:Q33 Finland Point(24.93417 60.17556)

Point(18.068611111

O bJ e C t— O rl e n _te d Qwd:Q1754 Stockholm 978770 Qwd:Q34 Sweden 59.328444444)

p ro g ramm | N g Qwd:Q1748 Copenhagen 644431 Qwd:Q35 Denmark Pﬁf;‘?‘;ﬁs“?ﬁ?&a“

Point(21.011111111
52.23)

Qwd:Q270 Warsaw 1790658 Qwd:Q36 Poland

10

Why object orientation?

The job of variables is to store data. In object oriented programming (OOP)
the focus is on how data belong together and how we can facilitate safe and
correct access to data. How do data-centered tools (DBs, etc.) present data?

E | 7 L o, . b city cityLabel population country ., countrylLabel loc
xample: “Largest cities by — |
;] oint{-79.386666666
t " W' k' d t Qwd:Q172 Toronto 2731571 Qwd:Q18 Canada 43.670277777)
country query on IKIGata. ‘ _ PR T
Qwd:Q1490 Tokyo 14047594 Qwd:@17 Japan e
Point{10.738888888
- : Q wd:Q585 Oslo 693494 Qwd:Q20 Norway
|“||I|I|| Wikidata Query Service 59.913333333)
— = = 2 : Point{-6.260277777
| E= Exsempler | | Sperringsbygger | | @ Hielp |v‘ | ¥ Flere verkiay ‘v| Xp norsk (bokmal) Qwd:Q1761 | Dublin == Qwd:Q27 | Republic of Ireland 53.349722222)
o 1 #Largest cities per country Qwd:Q1781 Budapest 1723836 Qwd:Q28 Hungary i3 0doeda533
2 SELECT DISTINCT ?city ?7citylabel ?population ?country ZcountrylLabel ?loc WHERE { 47.498333333)
E I :
x 4 SELECT (MAX(?population_} AS ?population) ?country WHERE { Q wd:Q2807 Madrid 3305408 Q wd:Q29 Spain :’:n:t(—&mzs
X (85 7city wdt:P31/wdt:P279*% wd:Q515 . R
6 ?city wdt:P1682 ?population_ . United States of
7 7city wdt:P17 ZPcountry . :Q60 ew York City 8804190 :Q30 2 oint{-74.0 40.7
o y y Q wd:Q New York Ci 804 Qwd:Q G Point(-74.0 40.7)
8 }
=8 g GROUP BY 7country Brussels-Capital Point(4.3525
10 ORDER BY DESC(?population) Q wd:Q240 Region 1218255 Q wd:Q31 Belgium 50.846666666)
D 1 }
12 ?city wdt:P31/wdt:P279* wd:0515 .]] Point(6.132777777
i 13 7city wdt:P1882 ?population . Qwd:Q1842 Luxembourg 128512 Qwd:Q32 Luxembourg 49.610555555)
14 ?city wdt:P17 ?country .
% |15 7city wdt:P625 ?loc . Qwd:Q1757 Helsinki 643272 Qwd:Q33 Finland Point(24.93417 60.17556)
16 SERVICE wikibase:label { .
17 bd:serviceParam wikibase:language "en" . Qwd:Q1754 Stockholm 978770 Quwd034 | Sweden Point(18.068611111
18 1 : : 59.329444444)
| 20 ORDER BY DESC(?population) Qwd:Q1748 Copenhagen 644431 Qwd:Q35 Denmark pilif 2 bast Seace
| 55.676111111)
c .
) Qwd:0270 Warsaw 1790658 Qwd:036 Poland :;';;(]21 M
®- @ 290 resultater i lopel av 4117 ms <»Kode Llastned» & Lenkev ’

11

Class definition (Python syntax)

See the examples from the Python tutorial, Section 9.3.5:"

class Dog:
kind = 'canine' #
def _ init_ (self, name):
self.name = name #
>>> d = Dog('Fido")
>>> e = Dog('Buddy')
>>> d.kind #
'canine'
>>> e, kind #
'canine'
>>> d.name #
'Fido'
>>> e.name #
'Buddy'

class variable shared by all instances

instance variable unique to each instance

shared by all do;:k\\\\\\\\\\

We also call this an attribute

shared by all dogs or a field of the class

unique to d

unique to e

class Dog:
def _ init_ (self, name):

>>>
>>>
>>>
>>>
>>>

O QD

self.name = name

self.tricks = [] # creates a new empty list for each dog
def add_trick(self, trick):

self.tricks.append(trick)
Dog('Fido"')
Dog('Buddy"')

.add_trick('roll over')
.add_trick('play dead')
d.

tricks

['roll over']
>>> e, tricks
['play dead']

"https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables

12

https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables

Class definition (Python syntax)

~ Jupyter book-index (autosaved)

File Edit View Insert Cell Kernel Widgets Help Mot Trusted | Python 3 |
B |+ % & B 4 ¥ PR B |C W cCodke o =
In [1]: 1 class BookIndex:
2 def init (self):
3 self. chapter =1
- self. section =1
5 self. page = 1 .
o What are the attributes
7 def next chapter(self):
self. chapter += 1 of the class BookIndex?

w oo

self. section = 1
self. page += 1
return self. chapter

b
Nds k= o

d i

def next_section(self): What IS the meanlng Of
il the keyword “self"?

15 return self. section

[=1]

17 def next page(self):
18 self. page += 1
19 return self. page

21 def out(self): . .
22 print("Section ", self. chapter, \ bOOk—IﬂdeX.lpyﬂb
23 2ot sell. sechion, ®, pl ¥
24 self. page, sep="", end="\n")
In [4] 1 idx = BookIndex()
2 idx._ chapter =1
3 idx. section = 8
4 idx. page = 8

[=2]

idx.out()

Section 1.8, p. 8

Class definition (Python syntax)

" Jupyter book-index (autosaved)

File Edit View Insert Cell Kernel Widgets Help Not Trusted | Python 3 |
B |+ x| & B 4+ ¥ PR B | C W | coe o =
Python tutorial, Section 9.6:
In [1]: 1 class BookIndex:

2 def init (self):

3 self. chapter =1
- self. section =1
5 self. page =1

“private” instance variables that cannot
be accessed except from inside an

object don't exist in Python.
def next chapter(self):

self. chapter += 1
self. section = 1

E However, there is a convention that is
16 self. page += 1

def
def

21 def

return self. chapter

next section(self):
self. section 4= 1
return self. section

next page(self):
self. page += 1
return self. page

followed by most Python code: a name
prefixed with an underscore (e.g.
_spam) should be treated as a non-
public part of the APl (whether itis a
function, a method or a data member).
It should be considered an

out(self):
print("section ", self. chapter, \ implementation detail and subject to
=" self. section; %, p. %, A . .
SANE. i an mrenn change without notice.
In [4]: 1 idx = BookIndex()

> |idx. chapter = 1

3 idx. section = 8
1 idx._page = 8 \

5 idx.out()

Section 1.8, p. 8

Why is it bad practice to do this?
What should we do instead?

14

Python classes compared to C/C++ structures

In [1]:

class BookIndex:
def init_ (self):
self._chapter = 1
self. section = 1
self. page = 1

def next_chapter(self):
self._chapter += 1
self._section = 1
self. page += 1
return self. chapter

def next section(self):
self._section += 1
return self._section

def next_page(self):
self. page += 1
return self. page

def out(self):
print(“Section ", self._chapter, \
., self. section, *, p. ") \
self, page, sep="", end="\n")

In [2]:

idx = BookIndex()
idx._chapter = 1
idx. section = 8
idx. page = 25

idx.out()

Section 1.8, p. 25

In[]:

Tl 1

def start_chapter(b):
b.next_chapter()
b.out()

start_chapter(idx) <=

struct Booklndex

{

. int Bookindex::next_chapter() {
int chapter = 1;

this->chapter++;
this->section = 1;
this->page++;
return this->chapter;

}

int Bookindex::next_section() {
/ this->section++;
return this->section;

}

int section = 1;
int page = 1;

int next_chapter();

int next_section();

int next_page()j ———— int BookIndex::next_page() {
this->page++;

. return this->page;
void out() const; i

}
} \\\\\~\\\\\\\\\\\
void BookIndex::out() const {
cout << "Section " << this->chapter
<< "." << this->section
<< ", p." << this->page << "\n";

How do Python, Java, and C++

idx.out()

deal with argument passing?
15

Noregs milj@- og

U
B biovitskaplege
M universitet

2 Data and objects

2.1 Object-oriented Python
2.2 Inheritance and taxonomy

DAT121 17. august 2023

Inheritance (Python syntax)

See Chapter 9 of the Python tutorial as follows:

9.5. Inheritance

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The
syntax for a derived class definition looks like this:

class DerivedClassName(BaseClassName):
statement -1

statement-N

9.5.1. Multiple Inheritance

Python supports a form of multiple inheritance as well. A class definition with multiple base classes looks like
this:

class DerivedClassName(Basel, Base2, Base3):
statement-1

statement-N

Conceptual hierarchy or taxonomy

Consider the following example from Silberschatz et al. (Fig. 6.18):

/

Person

Employee

e

ID
name
Street

City

salary

Instructor

rank

N\

Secretary

hours_per_week

I

Student

tot _credits

18

Conceptual hierarchy or taxonomy

In Python programming, complicated class hierarchies are possible, but rarely

used. This includes multiple inheritance (diamond structure in the taxonomy’).
In Java, but also C++, it is common to find deep class hierarchies, e.g.:

javax.security.auth.Destroyable
java.security.PrivateKey (also extends java.security.Key)
java.security.interfaces.RSAKey
java.security.interfaces.RSAPrivateKey (also extends java.security.PrivateKey)
java.security.interfaces.RSAMultiPrimePrivateCrtKey
java.security.interfaces.RSAPrivateCrtKey
java.security.interfaces.RSAPublicKey (also extends java.security.PublicKey)
java.io.Serializable
java.security.Key
java.security.PrivateKey (also extends javax.security.auth.Destroyable)

java.security.PublicKey

"Python tutorial, Sec. 9.5.1: “all cases of multiple inheritance exhibit one or more diamond relationships (where at
least one of the parent classes can be accessed through multiple paths from the bottommost class). For example,
all classes inherit from object, so any case of multiple inheritance provides more than one path to reach object.” 19

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Related teaching activities: INF205

INF205: Resource-efficient programming (spring term - used to be in autumn)

This course introduces students with experience in high-level programming languages

(e.g., Python) to programming in a compiled programming language with explicit

memory management, with a focus on efficient use of computational resources.

Specific topics are:

Modern C++ syntax and semantics

Compiling and building projects

Pointers, memory allocation and deallocation

Working with the C++ Standard Library

Generic programming with templates

Implementing containers from first principles

Interprocess communication (MPI)

Programming and sustainability

Responsible use of high-performance computing infrastructure

Interfacing with ROS (e.g., for embedded systems) 20

Related teaching activities: INF205

INF205: Resource-efficient programming (spring term - used to be in autumn)

This course introduces students with experience in high-level programming languages
(e.g., Python) to programming in a compiled programming language with explicit

memory management, with a focus on efficient use of computational resources.

Top Programming Languages 2022 Python may be nice and

Click a button to see a differently weighted ranking

elegant, but it is often

Jobs Trending . . .
inefficent. We still see C, C++,
eyioce |) and C# on the ranks 2 to 4.
c
ces
cs
e S The INF205 module is the only
=
avascrizt one in data science teaching
:
N Toor non-high-level programming,
roeserit [ETIE]
o IS with control over memory.
=

S. Cass, IEEE Spectrum, https://spectrum.ieee.org/top-programming-languages-2022, 2022. 21

https://spectrum.ieee.org/top-programming-languages-2022

Noregs milj@- og

U
M BI I biovitskaplege

universitet
2 Data and objects
2.1 Object-oriented Python

2.2 Inheritance and taxonomy
2.3 Conceptual modelling

DAT121 17. august 2023

Entity-relationship (E-R) diagrams

particular: individual relationship property

ID name population

QwdQi72 Toronto 2731571 ISCItylnCOuntry ID name
. ¥
Qwd:Q1490 Tokyo 14047584 Qwd:Q16 Canada
> P
Qwd:Q585 Oslo 693494 Qwd:Q17 Japan
Qwd:Q1761 Dublin 553165 P QwdQ20 Norway
- . :
Qwd:Q1781 Budapest 1723836 Q wd:Q27 Republic of Ireland
»
Qwd:Q2807 Madrid 3305408 Qwd:Q28 Hungary
~

QwdQ29 Spain

Q wd:Q60 New York City 8804180
= » United States of

Q wd:Q240 g:;::is—(}apllﬂl 1218255 Q wd:Q30 America

. .
Qwd:Q1842 Luxembourg 128512 ek Eekgun
Qwd:Q1757 Helsinki 643272 P Qwd:Q32 Luxembourg
Qwd:Q1754 Stockholm 978770 P Qwd:C33 Finland

-

Qwd:Q1748 Copenhagen 644431 Qwd:Q34 Sweden

Qwd:Q270 Warsaw 1790658 Qwd:Q35 Denmark

Qwd:Q36 Poland

City entity set
Country entity set

Entity-relationship (E-R) diagrams

particular: individual relationship property
universal: concept relation attribute
City
Country
1D This was also an entity-relationship diagram:
isCitylnCountry isCountryOfCity Q
name Person
, name
population D
street
c e . /] Employee /VCffy v\ Student
“every City is in such a relationship o S
“it is an N-to-1 relation from Cities to Countries” / \
Instructor Secretary
rank hours_per_week

More on entity-relationship diagrams:
— Silberschatz et al., Database System Concepts, Chapter 6
— https://en.wikipedia.org/wiki/Entity-relationship_model 24

https://en.wikipedia.org/wiki/Entity-relationship_model

Entity-relationship (E-R) diagrams

entity (sometimes: attribute)
particular: |nd|V|dua|oloject relationship property
entity type relationship type (sometimes: attribute type)
universal: concept relation attribute
class (in OWL: ObjectProperty) (in OWL: DatatypeProperty)
City
Country
1D e Zommorcs| ID This was also an entity-relationship diagram:
name Person
, name
population D
using cardinality constraints: p——— /Vfiyeet \ p——
. o o salar ot_credits
“each City is in exactly one Country” /4 - \ —
“but there can be arbitrarily many (from 0 to infinity) prer— p—
Cities in each Country” o P
concept relation
25

Particulars vs. universals

entity
particular: individual object relationship property
entity type relationship type
universal: concept relation attribute
Class

Definition: A concept is a universal that is only instantiated by individuals.

» From SKOS, a semantic artefact for organizing conceptual schemes: “Concepts are
the units of thought - ideas, meanings, or (categories of) objects and events - which
underlie many knowledge organization systems” (Isaac & Summers 2009).

* In many settings, including in object-oriented programming, a concept is usually
called a class. In E-R diagram terminology, it is called an entity type.

» E-Rterminology distinguishes between an entity type and the corresponding
entity set, i.e., the set of all individuals that instantiate the entity type. In nominalist

ontology, these two are the same - a universal is the set of its individual instances.

More about SKOS:

n .
conEs relation https://www.w3.org/TR/skos-primer/

26

https://www.w3.org/TR/skos-primer/

Generic programming

Relying on clearly characterized concepts in object orientation is also called
generic programming (GP), which can be seen as its own programming para-
digm, building on OOP, but going beyond it; “by implementing programs
generically, a single implementation can be used for many different types”.

Modern C++ supports such design by (1) inheritance and (2) templates.

template<typename SeqnT, ...>
void test_sequence(SegnT* sgn, ...)

{...}

'L. Escot, J. Cockx, Proc. ACM Prog. Lang. 6: 625-649, doi:10.1145/3547644, 2022. 27

Generic programming

Relying on clearly characterized concepts in object orientation is also called
generic programming (GP), which can be seen as its own programming para-
digm, building on OOP, but going beyond it; “by implementing programs
generically, a single implementation can be used for many different types”.

Modern C++ supports such design by (1) inheritance and (2) templates.

From C++20 onward, concepts are introduced as GP language constructs.
They describe requirements for a type (e.g., it must provide an operator such
as “<<", a particular method, or we must be able to add it to an integer, ...).

// old style: does not make clear what // new style, where we would define Sequence
// we expect from the class SegnT // as a concept (and not as an abstract class)
template<typename SeqnT, ...> template<Sequence SeqnT, ...>

void test_sequence(SegnT* sgn, ...) void test_sequence(SegnT* sgn, ...)

{oan) {...}

'L. Escot, J. Cockx, Proc. ACM Prog. Lang. 6: 625-649, doi:10.1145/3547644, 2022.)8

Institutt for datavitskap

B Noregs milj@- og
biovitskaplege
M universitet

Digitalisering pa As

Conclusion

DAT121 17. august 2023

r' J Norwegian University
- of Life Sciences

Glossary terms

Proposed glossary’ terms:

— How do we best define them? Is the definition controversial?
— What is the best translation into Norwegian bokmal/nynorsk?
— Are there more key concepts that would require an agreed definition?

concept
individual (also: class, entity type) ObJeCt'O”er?ted
(also: entity, object) programming
»
\
. \
relation [« \
relationship IEiis elpei o
(also: object property, discussion

relationship type)

"https://home.bawue.de/~horsch/teaching/dat121/glossary-en.html

DAT121 17" August 2023 30

https://home.bawue.de/~horsch/teaching/dat121/glossary-en.html

Norges miljg- og

e
biovitenskapelige
M

universitet

DAT121
Introduction to data science

2 Data and objects

2.1 Object-oriented programming in Python
2.2 Inheritance and class hierarchies
2.3 Conceptual modelling

DAT121 17. august 2023

