
DAT121 17. august 2023

Digitalisering på Ås

Institutt for datavitenskap

DAT121
Introduction to data science

2 Data and objects

2.1 Object-oriented programming in Python
2.2 Inheritance and class hierarchies
2.3 Conceptual modelling

217th August 2023DAT121

Schedule for 17th and 18th August

Thursday, 17th August 2023

09.15 discussion and Q&A
– 10.00 1.5 Python libraries

10.15 problem solving and start of
– 11.00 first lecture on data and objects

2.1 OOP in Python

11.15 problem solving and continued
– 12.00 first lecture on data and objects

2.2 Inheritance
2.3 Conceptual modelling

13.15 tutorial session
– 15.00

Friday, 18th August 2023

09.15 discussion and Q&A
– 10.00

10.15 second lecture on data and objects
– 11.00 2.4 Semantic interoperability

2.5 Knowledge graphs
2.6 Querying

11.15 Fadi Al Machot’s presentation
– 12.00 on research and Master topics

The afternoon of 18th August is
reserved for the immatriculation.

317th August 2023DAT121

Programming paradigms

Imperative programming
– It is stated, instruction by instruction, what

the processor should do
– Control flow implemented by jumps (goto)

Structured programming
– Same, but with higher-level control flow
– Contains “instruction by instruction” code

Procedural programming
– Functions (procedures) as highest-level

structural unit of code
– Still contains loops, etc., for control flow

within a function

Object-oriented programming (OOP)
– Classes as highest-level structural unit of

code; objects instantiate classes
– Still contains functions, e.g., as methods

Functional programming
(also: “declarative programming”)

Constraint programming

Logic programming

Programming paradigms based
on describing the solution

rather than computational steps:

Generic programming
(introduces ideas from declarative

and logical methods into OOP)

417th August 2023DAT121

Recursion in procedural programming

Recursion is the process of defining the solution to a problem (or the solution
to a problem) in terms of a simpler or smaller instance of the same problem.

Image from: https://www.therussianstore.com/blog/the-history-of-nesting-dolls

Recursion is a form of decomposition:

solution(k) ≡ recursive_step(solution(< k))

solution(⊥) ≡ base_case_solution

The base case (or a base
case) is reached when
the problem has been
simplified to the utmost

k
< k

⊥

http://www.therussianstore.com/blog/the-history-of-nesting-dolls

5

Recursion in procedural programming

Recursion is the process of defining the solution to a problem (or the solution
to a problem) in terms of a simpler or smaller instance of the same problem.

Image from: https://www.therussianstore.com/blog/the-history-of-nesting-dolls

Recursion is a form of decomposition:

solution(k) ≡ recursive_step(solution1(< k), solution2(< k), …)

solution(⊥) ≡ base_case_solution

The base case (or a base
case) is reached when
the problem has been
simplified to the utmost

⊥

Multiple recursion
decomposes a problem
into more than one
simplified instance

http://www.therussianstore.com/blog/the-history-of-nesting-dolls

6

Multiple recursion

The Fibonacci numbers constitute a mathematical sequence that is defined by
multiple recursion:

F0 = 0

F1 = 1

Fk = Fk–1 + Fk–2 , for k > 1 0, 1, 1, 2, 3, 5, 8, 13, …

While the definition is most conveniently given in the form of a recursion, the
numerical implementation would usually proceed by iteration. Compare the
code employing a loop with that obtained by a direct calque of the definition.

k – 1 k – 2

k – 2 k – 3 k – 3 k – 4

k

k – 3 k – 4 k – 4 k – 4 k – 5k – 5 k – 5 k – 6

7

Multiple recursion: Dynamic programming

The Fibonacci numbers constitute a mathematical sequence that is defined by
multiple recursion:

F0 = 0

F1 = 1

Fk = Fk–1 + Fk–2 , for k > 1 0, 1, 1, 2, 3, 5, 8, 13, …

While the definition is most conveniently given in the form of a recursion, the
numerical implementation would usually proceed by iteration. Compare the
code employing a loop with that obtained by a direct calque of the definition.

k – 1 k – 2

k – 2 k – 3 k – 3 k – 4

k

k – 3 k – 4 k – 4 k – 4 k – 5k – 5 k – 5 k – 6

k – 1 k – 2

k – 2 k – 3

k

k – 3 k – 4

store and recall
(memoization)

DAT121 17. august 2023

Digitalisering på Ås

Institutt for datavitskap

2 Python basics

2.1 Object-oriented Python

9

Programming paradigms

Imperative programming
– It is stated, instruction by instruction, what

the processor should do
– Control flow implemented by jumps (goto)

Structured programming
– Same, but with higher-level control flow
– Contains “instruction by instruction” code

Procedural programming
– Functions (procedures) as highest-level

structural unit of code
– Still contains loops, etc., for control flow

within a function

Object-oriented programming (OOP)
– Classes as highest-level structural unit of

code; objects instantiate classes
– Still contains functions, e.g., as methods

Functional programming
(also: “declarative programming”)

Constraint programming

Logic programming

Programming paradigms based
on describing the solution

rather than computational steps:

Generic programming
(introduces ideas from declarative

and logical methods into OOP)

10

Why object orientation?

The job of variables is to store data. In object oriented programming (OOP)
the focus is on how data belong together and how we can facilitate safe and
correct access to data. How do data-centered tools (DBs, etc.) present data?

Example: “Largest cities by
country” query on Wikidata.

object-oriented
programming

11

Why object orientation?

The job of variables is to store data. In object oriented programming (OOP)
the focus is on how data belong together and how we can facilitate safe and
correct access to data. How do data-centered tools (DBs, etc.) present data?

Example: “Largest cities by
country” query on Wikidata.

12

Class definition (Python syntax)

See the examples from the Python tutorial, Section 9.3.5:1

1https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables

class Dog:
 kind = 'canine' # class variable shared by all instances
 def __init__(self, name):
 self.name = name # instance variable unique to each instance
>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.kind # shared by all dogs
'canine'
>>> e.kind # shared by all dogs
'canine'
>>> d.name # unique to d
'Fido'
>>> e.name # unique to e
'Buddy'

class Dog:
 def __init__(self, name):
 self.name = name
 self.tricks = [] # creates a new empty list for each dog
 def add_trick(self, trick):
 self.tricks.append(trick)
>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.add_trick('roll over')
>>> e.add_trick('play dead')
>>> d.tricks
['roll over']
>>> e.tricks
['play dead']

We also call this an attribute
or a field of the class

https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables

13

Class definition (Python syntax)

What are the attributes
of the class BookIndex?

What is the meaning of
the keyword “self”?

book-index.ipynb

14

Class definition (Python syntax)

“private” instance variables that cannot
be accessed except from inside an
object don’t exist in Python.

However, there is a convention that is
followed by most Python code: a name
prefixed with an underscore (e.g.
_spam) should be treated as a non-
public part of the API (whether it is a
function, a method or a data member).
It should be considered an
implementation detail and subject to
change without notice.

Python tutorial, Section 9.6:

Why is it bad practice to do this?
What should we do instead?

15

Python classes compared to C/C++ structures

struct BookIndex
{
 int chapter = 1;
 int section = 1;
 int page = 1;

 int next_chapter();

 int next_section();

 int next_page();

 void out() const;
}

int BookIndex::next_chapter() {
 this->chapter++;
 this->section = 1;
 this->page++;
 return this->chapter;
}

int BookIndex::next_section() {
 this->section++;
 return this->section;
}

int BookIndex::next_page() {
 this->page++;
 return this->page;
}

void BookIndex::out() const {
 cout << "Section " << this->chapter
 << "." << this->section
 << ", p. " << this->page << "\n";
}

How do Python, Java, and C++
deal with argument passing?

DAT121 17. august 2023

Digitalisering på Ås

Institutt for datavitskap

2 Data and objects

2.1 Object-oriented Python
2.2 Inheritance and taxonomy

17

Inheritance (Python syntax)

See Chapter 9 of the Python tutorial as follows:

18

Consider the following example from Silberschatz et al. (Fig. 6.18):

Conceptual hierarchy or taxonomy

 Person

ID

name

street

city Employee

salary

 Student

tot_credits

 Instructor

rank

 Secretary

hours_per_week

19

In Python programming, complicated class hierarchies are possible, but rarely

used. This includes multiple inheritance (diamond structure in the taxonomy1).

In Java, but also C++, it is common to find deep class hierarchies, e.g.:

Conceptual hierarchy or taxonomy

1Python tutorial, Sec. 9.5.1: “all cases of multiple inheritance exhibit one or more diamond relationships (where at
least one of the parent classes can be accessed through multiple paths from the bottommost class). For example,
all classes inherit from object, so any case of multiple inheritance provides more than one path to reach object.”

javax.security.auth.Destroyable

java.security.PrivateKey (also extends java.security.Key)

java.security.interfaces.RSAKey

java.security.interfaces.RSAPrivateKey (also extends java.security.PrivateKey)

java.security.interfaces.RSAMultiPrimePrivateCrtKey

java.security.interfaces.RSAPrivateCrtKey

java.security.interfaces.RSAPublicKey (also extends java.security.PublicKey)

java.io.Serializable

java.security.Key

java.security.PrivateKey (also extends javax.security.auth.Destroyable)

java.security.PublicKey

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

20

INF205: Resource-efficient programming (spring term – used to be in autumn)

This course introduces students with experience in high-level programming languages

(e.g., Python) to programming in a compiled programming language with explicit

memory management, with a focus on efficient use of computational resources.

Specific topics are:

● Modern C++ syntax and semantics
● Compiling and building projects
● Pointers, memory allocation and deallocation
● Working with the C++ Standard Library
● Generic programming with templates
● Implementing containers from first principles
● Interprocess communication (MPI)
● Programming and sustainability
● Responsible use of high-performance computing infrastructure
● Interfacing with ROS (e.g., for embedded systems)

Related teaching activities: INF205

21

INF205: Resource-efficient programming (spring term – used to be in autumn)

This course introduces students with experience in high-level programming languages

(e.g., Python) to programming in a compiled programming language with explicit

memory management, with a focus on efficient use of computational resources.

Related teaching activities: INF205

S. Cass, IEEE Spectrum, https://spectrum.ieee.org/top-programming-languages-2022, 2022.

Python may be nice and

elegant, but it is often

inefficent. We still see C, C++,

and C# on the ranks 2 to 4.

The INF205 module is the only

one in data science teaching

non-high-level programming,

with control over memory.

https://spectrum.ieee.org/top-programming-languages-2022

DAT121 17. august 2023

Digitalisering på Ås

Institutt for datavitskap

2 Data and objects

2.1 Object-oriented Python
2.2 Inheritance and taxonomy
2.3 Conceptual modelling

23

Entity-relationship (E-R) diagrams

particular: individual relationship propertyrelationshipindividual

ID name population

City entity set

ID name

Country entity set

isCityInCountry

24

Entity-relationship (E-R) diagrams

particular: individual relationship property

universal: concept relation attributeconcept relation

More on entity-relationship diagrams:
– Silberschatz et al., Database System Concepts, Chapter 6
– https://en.wikipedia.org/wiki/Entity-relationship_model

This was also an entity-relationship diagram:

 City

ID

name

population
 Person

ID

name

street

city Employee

salary

 Student

tot_credits

 Instructor

rank

 Secretary

hours_per_week

 Country

ID

name

city_country
isCityInCountry isCountryOfCity

“every City is in such a relationship”

“it is an N-to-1 relation from Cities to Countries”

https://en.wikipedia.org/wiki/Entity-relationship_model

25

Entity-relationship (E-R) diagrams

particular: individual relationship property

universal: concept relation attribute

This was also an entity-relationship diagram:

 City

ID

name

population
 Person

ID

name

street

city Employee

salary

 Student

tot_credits

 Instructor

rank

 Secretary

hours_per_week

 Country

ID

name

city_country
0..*1..1

isCityInCountry isCountryOfCity

“each City is in exactly one Country”
“but there can be arbitrarily many (from 0 to infinity)

Cities in each Country”

concept relation

using cardinality constraints:

entity

entity type relationship type

(sometimes: attribute)

(sometimes: attribute type)
object

class (in OWL: ObjectProperty) (in OWL: DatatypeProperty)

26

particular: individual relationship property

universal: concept relation attribute

Particulars vs. universals

concept

Definition: A concept is a universal that is only instantiated by individuals.

● From SKOS, a semantic artefact for organizing conceptual schemes: ”Concepts are

the units of thought - ideas, meanings, or (categories of) objects and events – which

underlie many knowledge organization systems” (Isaac & Summers 2009).
● In many settings, including in object-oriented programming, a concept is usually

called a class. In E-R diagram terminology, it is called an entity type.
● E-R terminology distinguishes between an entity type and the corresponding

entity set, i.e., the set of all individuals that instantiate the entity type. In nominalist

ontology, these two are the same – a universal is the set of its individual instances.

relation More about SKOS:
https://www.w3.org/TR/skos-primer/

entity

entity type relationship type
object

class

https://www.w3.org/TR/skos-primer/

27

Relying on clearly characterized concepts in object orientation is also called
generic programming (GP), which can be seen as its own programming para-
digm, building on OOP, but going beyond it; “by implementing programs
generically, a single implementation can be used for many different types”.1

Modern C++ supports such design by (1) inheritance and (2) templates.

Generic programming

template<typename SeqnT, …>
 void test_sequence(SeqnT* sqn, …)
{ … }

1L. Escot, J. Cockx, Proc. ACM Prog. Lang. 6: 625–649, doi:10.1145/3547644, 2022.

28

Relying on clearly characterized concepts in object orientation is also called
generic programming (GP), which can be seen as its own programming para-
digm, building on OOP, but going beyond it; “by implementing programs
generically, a single implementation can be used for many different types”.1

Modern C++ supports such design by (1) inheritance and (2) templates.

From C++20 onward, concepts are introduced as GP language constructs.
They describe requirements for a type (e.g., it must provide an operator such
as “<<”, a particular method, or we must be able to add it to an integer, …).

Generic programming

// old style: does not make clear what
// we expect from the class SeqnT
template<typename SeqnT, …>
 void test_sequence(SeqnT* sqn, …)
{ … }

// new style, where we would define Sequence
// as a concept (and not as an abstract class)
template<Sequence SeqnT, …>
 void test_sequence(SeqnT* sqn, …)
{ … }

1L. Escot, J. Cockx, Proc. ACM Prog. Lang. 6: 625–649, doi:10.1145/3547644, 2022.

DAT121 17. august 2023

Digitalisering på Ås

Institutt for datavitskap

Conclusion

3017th August 2023DAT121

Glossary terms

Proposed glossary1 terms:

– How do we best define them? Is the definition controversial?
– What is the best translation into Norwegian bokmål/nynorsk?
– Are there more key concepts that would require an agreed definition?

1https://home.bawue.de/~horsch/teaching/dat121/glossary-en.html

relationship

object-oriented
programming

(also: class, entity type)

concept

(also: entity, object)

individual

relation
(also: object property,

relationship type)

left open for
discussion

https://home.bawue.de/~horsch/teaching/dat121/glossary-en.html

DAT121 17. august 2023

Digitalisering på Ås

Institutt for datavitenskap

DAT121
Introduction to data science

2 Data and objects

2.1 Object-oriented programming in Python
2.2 Inheritance and class hierarchies
2.3 Conceptual modelling

