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Schedule for DAT121 parts 4 and 5

Friday, 25th August 2023

10.15 – 11.00 lecture on good practice 13.15 – 15.00 project work and tutorial

11.15 – 12.00 interest group sessions

Tuesday, 29th August 2023

09.15 – 10.00 Q&A session and discussion 13.15 – 15.00 project work and tutorial

10.15 – 11.00 second multidimensionality lecture

11.15 – 12.00 interest group sessions

Monday, 28th August 2023

09.15 – 10.00 first multidimensionality lecture 13.15 – 15.00 project work and tutorial

10.15 – 10.?? Pandasia presentation in TF1-115

11.15 – 11.?? linjeforeningen’s presentation (back in TF1-205)
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Dimensionality and optimization

Is there one parameter, or are there multiple parameters?
Is there one objective, or are there multiple objectives?

multicriteria (MCO)utility or cost

single
parameter

multivariate 
optimization

y

x
§

Parameters: Quantites that are part of the solution and directly in your control.

Objectives: Quantities that should become as small (or as large) as possible, 
but can be influenced only indirectly, through a good choice of parameters.

optimization 
objective
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Agents and decisions

Agents are systems that can interact with their surroundings. For interaction, 
two directions are needed. Percepts (input signals) are received through 
sensors, and actions (motion, speech, etc.) are done through actuators.

Almost any system can be analysed as an agent. Humans, cleaning robots, and 
seagulls can be understood as agents. But so can a pocket calculator, the 
stock exchange, the earth’s climate system, or a single neuron in the brain.

This is not so much a category of systems, it is rather a way of analysing them.

Agent Surroundings
percepts

actions

sensors

actuators

some correlation between 
the percepts and actions
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Agents and decisions

This characterization is sufficiently general to make any program with an input 
and an output an “agent”; e.g., a program may read from standard input, files, 
and devices, and act upon standard output, files, and devices.

We may want to become more specific about what we expect from AI agents.

Agent Surroundings
percepts

actions

sensors

actuators

agent function

Agents are systems that can interact with their surroundings. For interaction, 
two directions are needed. Percepts (input signals) are received through 
sensors, and actions (motion, speech, etc.) are done through actuators.

agent
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Agency and rationality

Agent

Goal-Oriented Agent

Intelligent Agent

Rational
Agent

Knowledge-
Based Agent

Goal-Directed
Agent

1R. Conte, “Rational, goal-oriented agents,” in R. A. Meyers (ed.), Encyclopedia of 
Complexity and Systems Science, Springer, 2009.

Taxonomy mostly 
following Conte1

works with the tendency 
“to achieve a a certain 

state of the world”1

Tendency to work 
toward an optimum for 

the agent’s perfor-
mance measure.

Goal-directed agents 
“have an internal 

representation of the goals 
they [tend to] achieve.”1

doi:10.1007/978-0-387-30440-3_445

https://dx.doi.org/10.1007/978-0-387-30440-3_445
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Rational decision making

Necessary criteria for rational decision making:

Assume A, B, C are possible states of affairs. X and Y are probability distribu-
tions (lotteries) over states of affairs, e.g., “50% chance A, 50% chance B”.

– Transitivity: If the agent prefers A over B, and B over C, then the agent 
also prefers A over C, whenever given the choice.

– Monotonicity: If the agent prefers A over B, and both X and Y have only 
A and B as their possible outcomes, where the probability of A is 
greater in the case of X, then the agent prefers X over Y.

– Continuity: If the agent prefers A over B, and B over C, then there is 
exactly one lottery X, with A and C as its only possible outcomes, such 
that the agent is indifferent between B and X. For any other lottery Y 
between A and C, the agent prefers Y over B if the probability of A is 
greater than in case of X; otherwise, the agent prefers B over Y.

rationality
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Rational decision making

Necessary criteria for rational decision making:

Assume A, B, C are possible states of affairs. X and Y are probability distribu-
tions (lotteries) over states of affairs, e.g., “50% chance A, 50% chance B”.

– Transitivity: If the agent prefers A over B, and B over C, then the agent 
also prefers A over C, whenever given the choice.

“Hans im Glück” (“Lyykehans”) makes irrational choices, violating transitivity; artist: O. Ubbelohde (1909).
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Multiple objectives

Song by Walther von der Vogelweide (~ 1200)

Diu wolte ich gerne in einen schrîn.
Jâ leider des enmac niht sîn,
daz guot und weltlich êre
und gotes hulde mêre
zesamene in ein herze komen. 

These I would like to have in one box.
But sadly that may not be,
that goods and worldly honour,
and God's grace additionally,
come together in a single heart.
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Dominated choices and irrationality

Spider diagrams are often used to visualize points in objective space.

y0

y1

y2

y3

Assume that y0, y1, y2, and y3 
are all minimization objectives.6

4

2

y

y = [3, 2, 5, 4]

Each polygon in a 
spider diagram 
represents one 

point in objective 
space, in this case y.
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Dominated choices and irrationality

Spider diagrams are often used to visualize points in objective space.

y0

y1

y2

y3

Assume that y0, y1, y2, and y3 
are all minimization objectives.6

4

2

y
y’

y’’

y = [3, 2, 5, 4]

y’ = [4, 5, 6, 4]

y’’ = [2, 3, 2, 6]

Note: y and y’ perform equally 
in criterion y3, and in the three 
other criteria, y outperforms y’.

We say: y dominates y’. Since 
y’ is dominated, it cannot be a 
rational choice to select y’.
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Decision support and decision making

decision 
problem

actionable 
decision

validation

simulation

real 
world

symbolic 
representation

real 
world

symbolic 
representation

modelling

data 
analysis

learning 
from data

optimization

As a decision support system, e.g., 
based on multicriteria optimization, 
artificial intelligence can assist another 
entity (such as a human decision maker).

However, if we employ a single objective 
(“overall cost” or “overall utility”),

y = f (x), where x = [x0, x1, …, xm–1],

where y is a scalar, a single numerical va-
lue, decision making can be automated.

The best decision is then given by a 
choice of parameters x0 to xm–1 such that 
y becomes minimal (if it is “cost”) or 
maximal (if it is “utility”).

Typical workflow in data and 
modelling based decision 

support and decision making
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Specification of an MCO problem

Three elements need to be specified to facilitate multicriteria decision support:

1) The parameter space: What is it that can be varied and is in direct 
control (or to be assumed as being under direct control) of the decision 
maker? What quantities define that which is possible in the scenario?

The permitted range (+ any applicable constraints) need to be stated.

2) The objective space: What are our criteria? If numerical optimization with 
scipy is to be used, best expressed as mnimization objectives.

3) The objective function – if all criteria are minimization objectives, this can 
be called a multicriteria cost function: This must actually be implemented 
as a function, in the sense that the term has in programming.
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Specification of an MCO problem

parameter x0

parameter x 1

p
ar

am
et

er
 x

2

parameter space

point x = [x0, x1, x2] 
in parameter space

In general, there can be any number m of parameters (m-dimensional para-
meter space); the parameter space is defined by parameters and a range of 
values that is accessible, i.e., within which decision making is actually possible.

This requires that multiple parameter values can be selected independently.

optimization 
parameter
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Specification of an MCO problem

parameter x0

parameter x 1p
ar

am
et

er
 x

2

objective y0

objective y 1

o
b

je
ct

iv
e 

y 2

parameter space objective space

point x = [x0, x1, x2] 
in parameter space

point y = f (x) = [y0, y1, y2] 
in objective space

In general, there can be any number m of parameters (m-dimensional para-
meter space) and any number n of objectives (n-dimensional objective space).

The optimization problem is defined by a function f that maps a list of para-
meters x = [x0, …, xm–1] to the outcome for the objectives y = f (x) = [y0, …, yn–1].



18

Specification of an MCO problem

parameter x0

parameter x 1p
ar

am
et

er
 x

2

objective y0

objective y 1

objective y2parameter space objective space

x
f (x)

Design choices are made by selecting a point in parameter space, but they are 
evaluated in objective space, by comparing the outcomes for y0, …, yn–1.

The optimization problem is defined by a function f that maps a list of para-
meters x = [x0, …, xm–1] to the outcome for the objectives y = f (x) = [y0, …, yn–1].

x’

f (x’)
x’’

f (x’’)
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Pareto front (also called Pareto set)

An accessible point in objective space belongs to the Pareto front whenever it 
is not dominated by any other accessible point in objective space.

Assume that there are two mi-
nimization objectives, y0 and y1.

objective y0

o
b

je
ct

iv
e 

y 1

objective space

y = [3, 2]

y’ = [4, 5]

y’’ = [2, 3]

1

1

0

y’

y

y’’

accessible 
part of objec-

tive space
unaccessible 
part of objec-

tive space
Pareto front

Pareto 
optimality
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Pareto front (also called Pareto set)

An accessible point in objective space belongs to the Pareto front whenever it 
is not dominated by any other accessible point in objective space.

Assume that there are two mi-
nimization objectives, y0 and y1.

objective y0

o
b

je
ct

iv
e 

y 1

objective space

y = [3, 2]

y’ = [4, 5]

y’’ = [2, 3]

1

1

0

y’

y

y’’
dominates

domi-
nates

accessible 
part of objec-

tive space
unaccessible 
part of objec-

tive space

y and y’’ are rational
compromises between
the two objectives.

y’ is not, because it is
dominated by other
accessible points.

Pareto front
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Dimensionality in multicriteria optimization

● The dimension of the parameter space, defined by m independently 
variable parameters x0, …, xm–1, is exactly m, by construction.

● The objective space, defined over n criteria y0, …, yn–1, has dimension n.

● The accessible part of objective space (i.e., image of the objective function) 
cannot be higher-dimensional than the objective space as such. Therefore, 
its dimension q must satisfy q ≤ n. But the image of a continuous function 
cannot be of a dimension greater than that of its domain. Therefore, q ≤ m.

● The Pareto front in objective space must be lower-dimensional than 
objective space itself, due to the domination criterion; therefore, p ≤ n–1 
for its dimension p. But it must also all be accessible; therefore, p ≤ q ≤ m.

● The dimension p’ ≤ m of the Pareto-optimal region in parameter space 
must be at least the same as that of the Pareto front; hence, p ≤ p’ ≤ m.
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Example (molecular model parameterization)

K. Stöbener, P. Klein, M. Horsch, K. Küfer, H. Hasse, Fluid Phase Equilib. 411, 33 – 42, 2016.

δps / %

δρ
I  / 

%

δγ
 / 

%

2CLJQ molecular models
of low-molecular fluids:

Objective space and Pareto front

The considered problem was from model 
optimization. The task was to parameterize 
models that accurately reflect physical 
behaviour.

Four model parameters, m = 4.

Three criteria (quantifying accuracy of pre-
dictions for three kinds of properties), n = 3.

Dimension of image of the objective function 
(accessible part of objective space), q = 3.

Dimension of the Pareto front, p = 2. 

Dimension of Pareto-optimal part of 
parameter space: p’ = 2.
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Single-objective optimization using scipy

In Python it is possible to assign an object reference to a function to a variable. 

This means that functions can also be passed as arguments to other functions.

One common use of this is during optimization, using scipy.opt.minimize:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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Linear combinations of objectives

objective space

accessible

Pareto front

If y is a linear combination of the 
objectives, points in objective 
space with the same value for y 
are situated on a line; all such 
lines are parallel. The optimum 
with respect to y is given by the 
tangent to the Pareto front.

y = y
0  + 2y

1  = –5 million

unaccessible

y = y
0  + 2y

1  = –4 million

y = y
0  + 2y

1  = –2
y = y

0  + y
1  = –0.5

direction
1y0 + 2y1

direction
1y0 + 1y1

The sets of constant value are per-
pendicular to the direction (vector) 
indicated by the coefficients. This 
also applies to the tangents.

In 2D, the tangents and the 
constant-value sets are lines; 
in 3D, planes; in n dimensions, 
they are n–1 dimensional.



26

Linear combinations of objectives

The Pareto front can be 
constructed by solving the 
single-objective minimization 
problem (e.g., with opt.minimize)
for a series of linear 
combinations c0y0 + c1y1 + …
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“Sandwiching” by linear combinations

The Pareto front can be 
constructed by solving the 
single-objective minimization 
problem (e.g., with opt.minimize)
for a series of linear 
combinations c0y0 + c1y1 + …

However, this only works for the 
convex regions, i.e., curved out-
ward, toward the unaccessible

point found by a 1:2 linear 
combination because the 
Pareto front is curved outward

this point is 
blocking access 
to the remainder 
of the curve
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“Hyperboxing” for concave regions

adjust shape to get into 
the concave regionhyperboxing

linear combinations
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Sandwiching + hyperboxing method

Convex regions are detected by minimizing linear combinations ∑k ck yk.

Concave regions are detected by hyperboxing.1 Both tasks reduce to single-
objective minimization, which can be handled using scipy.optimize.

1K. Dächert, K. Teichert, An improved hyperboxing algorithm for calculating a Pareto front 
representation, preprint, arXiv:2003.14249 [math.OC], 2020.
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