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Glossary terms

rationality

optimization 
objective

Pareto 
optimality

agent

optimization 
parameter

1https://home.bawue.de/~horsch/teaching/dat121/glossary-en.html 

Proposed glossary1 terms:

– How do we best define them? Is the definition controversial?
– What is the best translation into Norwegian bokmål/nynorsk?
– Are there more key concepts that would require an agreed definition?

https://home.bawue.de/~horsch/teaching/dat121/glossary-en.html
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nn “agent” m., nb “agent” m.

Definition: An agent is a system that interacts with its surroundings. It receives percepts through sensors and 

can carry out actions through actuators.

● Beside its sensors and actuators, an agent is characterized by its agent function: The way in which the past 

and present percepts determine or influence the present and future actions.
● A goal-oriented agent is an agent that exhibits the tendency "to achieve a certain state of the world" 

(Conte 2009, p. 2578). Goal-orientation can emerge by a multitude of mechanisms, including biological 

evolution. It does not necessarily require the agent to be consciously aware of its goals.
● "Intelligent agents are goal-oriented agents using their knowledge to solve problems, including taking 

decisions and planning actions" (Conte 2009, p. 2578). This requires the agent to have some kind of 

internal representation of its surroundings, and to store and process information about its surroundings.
● A knowledge-based agent is an intelligent agent that uses a knowledge base to store and process its 

information about its surroundings.
● A rational agent is an intelligent agent that exhibits rationality, i.e., a tendency toward optimizing a 

quantity: The performance measure of the agent. As in the case of goal-orientation, this does not 

necessarily require the agent to be aware of its performance measure.
● "Goal-directed agents are intelligent agents that have an internal representation of the goals they [tend to] 

achieve" (Conte 2009, p. 2578).

Glossary terms: “Agent”
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nn “agent” m., nb “agent” m.

Definition: An agent is a system that interacts with its surroundings. It receives percepts through sensors and 

can carry out actions through actuators.

● Beside its sensors and actuators, an agent is characterized by its agent function: The way in which the past 

and present percepts determine or influence the present and future actions.
● A goal-oriented agent is an agent that exhibits the tendency "to achieve a certain state of the world" 

(Conte 2009, p. 2578). Goal-orientation can emerge by a multitude of mechanisms, including biological 

evolution. It does not necessarily require the agent to be consciously aware of its goals.
● "Intelligent agents are goal-oriented agents using their knowledge to solve problems, including taking 

decisions and planning actions" (Conte 2009, p. 2578). This requires the agent to have some kind of 

internal representation of its surroundings, and to store and process information about its surroundings.
● A knowledge-based agent is an intelligent agent that uses a knowledge base to store and process its 

information about its surroundings.
● A rational agent is an intelligent agent that exhibits rationality, i.e., a tendency toward optimizing a 

quantity: The performance measure of the agent. As in the case of goal-orientation, this does not 

necessarily require the agent to be aware of its performance measure.
● "Goal-directed agents are intelligent agents that have an internal representation of the goals they [tend to] 

achieve" (Conte 2009, p. 2578).

Glossary terms: “Agent”

Agent

Intelligent Agent

Knowledge-
Based Agent

Taxonomy mostly 
following Conte1

Goal-directed agents 
“have an internal 

representation of the goals 
they [tend to] achieve.”1

Tendency to work 
toward an optimum for 

the agent’s perfor-
mance measure.

works with the tendency 
“to achieve a a certain 

state of the world”1

Rational
Agent

Goal-Directed
Agent

1R. Conte, “Rational, goal-oriented agents,” in R. A. Meyers (ed.), Encyclopedia of 
Complexity and Systems Science, Springer, 2009.

Goal-Oriented Agent
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nn “rasjonalitet” m., nb “rasjonalitet” m.

Definition: Tendency toward minimizing a cost function or maximizing a performance measure. In 

particular, rational preferences, or decisions and choices made by a rational agent, must satisfy the 

following constraints (Russell & Norvig 2021, Artificial Intelligence: A Modern Approach, p. 520):

● Transitivity: If the agent prefers A over B, and B over C, then the agent also prefers A over C 

whenever given the choice.

● Monotonicity: Assume that the agent prefers A over B. The lotteries (i.e., probability distributions) 

X and Y both have A and B as their only possible outcomes, where the probability of A is greater in 

case of the lottery X than in case of the lottery Y. Then the agent prefers X over Y.

● Continuity: If the agent prefers A over B, and B over C, then here is exactly one lottery X with A and 

C as its only possible outcomes such that the agent is indifferent between B and X, i.e., the agent 

neither prefers B over X nor does the agent prefer X over B. For any other lottery Y with the two 

possible outcomes A and C, the agent prefers Y over B if the chance of A is greater in case of Y 

than in case of X; obversely, the agent prefers B over Y if the chance of A is smaller in case of Y 

than in case of X.

Glossary terms: “Rationality”
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nn “rasjonalitet” m., nb “rasjonalitet” m.

Definition: Tendency toward minimizing a cost function or maximizing a performance measure. In 

particular, rational preferences, or decisions and choices made by a rational agent, must satisfy the 

following constraints (Russell & Norvig 2021, Artificial Intelligence: A Modern Approach, p. 520):
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than in case of X; obversely, the agent prefers B over Y if the chance of A is smaller in case of Y 

than in case of X.

Glossary terms: “Rationality”
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nn “optimaliseringsparameter” m.,

nb “optimaliseringsparameter” m.

Definition: An optimization parameter is a 

quantity over which the decision maker has direct 

control; a parameter value (or parameterization) 

is selected in order to obtain the best possible 

outcome for the optimization objective(s).

● In multivariate optimization, there are multiple 

optimization parameters; accordingly, the 

parameter space is multidimensional.
● If an optimization problem with multiple 

parameters is formulated adequately, it should 

be possible to vary all optimization 

parameters independently. If that is not the 

case and one of the parameters can be 

expressed as a function of the others, the 

problem needs to be reformulated, 

eliminating redundant parameter(s).

Glossary terms: “Optimization parameter/objective”

nn “optimaliseringsmål” n.,

nb “optimaliseringsmål” n.

Definition: An optimization objective is a quantity that 

is used to formulate preferences for the outcome of a 

decision making scenario. In case of a maximization 

objective, greater values are preferred, and in case of a 

minimization objective, smaller values are preferred.

● An optimization objective can also be called an 

optimization criterion or a key performance 

indicator (KPI). If it is a minimization objective, it can 

also be called cost, and if it is a maximization 

objective, it can also be called utility.
● In multicriteria optimization (MCO), multiple 

conflicting optimization objectives are used 

simultaneously. In this case, there is a 

multidimensional objective space; the dimension of 

the objective space is given by the number of 

optimization objectives.
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nn “optimaliseringsparameter” m.,

nb “optimaliseringsparameter” m.

Definition: An optimization parameter is a 

quantity over which the decision maker has direct 

control; a parameter value (or parameterization) 

is selected in order to obtain the best possible 

outcome for the optimization objective(s).

● In multivariate optimization, there are multiple 

optimization parameters; accordingly, the 

parameter space is multidimensional.
● If an optimization problem with multiple 
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be possible to vary all optimization 

parameters independently. If that is not the 

case and one of the parameters can be 

expressed as a function of the others, the 

problem needs to be reformulated, 
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nn “optimaliseringsmål” n.,

nb “optimaliseringsmål” n.

Definition: An optimization objective is a quantity that 

is used to formulate preferences for the outcome of a 

decision making scenario. In case of a maximization 

objective, greater values are preferred, and in case of a 

minimization objective, smaller values are preferred.

● An optimization objective can also be called an 

optimization criterion or a key performance 

indicator (KPI). If it is a minimization objective, it can 

also be called cost, and if it is a maximization 

objective, it can also be called utility.
● In multicriteria optimization (MCO), multiple 

conflicting optimization objectives are used 

simultaneously. In this case, there is a 

multidimensional objective space; the dimension of 

the objective space is given by the number of 

optimization objectives.
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nn “Pareto-optimalitet” m., nb “Pareto-optimalitet” m.

Definition: Within the framework of multicriteria optimization (MCO), a point in objective space is 

Pareto optimal if it is accessible and no other accessible point in objective space dominates it.

● A point y in objective space is accessible if there is a point x in parameter space such that f(x) = y, 

where f(x) is the objective function, i.e., the cost function in case of minimization objectives.
● A point y in objective space dominates another point y' if there is at least one objective for which y 

is better than y', whereas there is no objective for which y' is better than y. If that is the case, there 

is no possible compromise between the objectives that would lead a rational agent to prefer y' 

over y. Therefore, if y is accessible, y' cannot be Pareto optimal.
● The Pareto front consists of all the Pareto optimal points in objective space.
● By extension, a point x in parameter space can also be called Pareto optimal (e.g., a Pareto optimal 

solution, parameterization, or design choice) if y = f(x) is Pareto optimal, i.e., if the point y in 

objective space is on the Pareto front.
● It is a common technique in AI-driven decision support to compute the Pareto front and the 

associated Pareto optimal design choices, presenting them to decision makers. All the other 

possible solutions can be discarded since they cannot correspond to a rational compromise 

between the objectives.

Glossary terms: “Pareto optimality”
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nn “Pareto-optimalitet” m., nb “Pareto-optimalitet” m.

Definition: Within the framework of multicriteria optimization (MCO), a point in objective space is 

Pareto optimal if it is accessible and no other accessible point in objective space dominates it.

● A point y in objective space is accessible if there is a point x in parameter space such that f(x) = y, 

where f(x) is the objective function, i.e., the cost function in case of minimization objectives.
● A point y in objective space dominates another point y' if there is at least one objective for which y 

is better than y', whereas there is no objective for which y' is better than y. If that is the case, there 

is no possible compromise between the objectives that would lead a rational agent to prefer y' 

over y. Therefore, if y is accessible, y' cannot be Pareto optimal.
● The Pareto front consists of all the Pareto optimal points in objective space.
● By extension, a point x in parameter space can also be called Pareto optimal (e.g., a Pareto optimal 

solution, parameterization, or design choice) if y = f(x) is Pareto optimal, i.e., if the point y in 

objective space is on the Pareto front.
● It is a common technique in AI-driven decision support to compute the Pareto front and the 

associated Pareto optimal design choices, presenting them to decision makers. All the other 

possible solutions can be discarded since they cannot correspond to a rational compromise 

between the objectives.

Glossary terms: “Pareto optimality”
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accessible points.
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Example (molecular model parameterization)

Pareto-optimal 2CLJQ models for oxygen

objective
space

parameter
space

< 12%

 zero 
 quadrupole 

< 3.3 %

< 1%

Self-organized patch plots1 visualizing the Pareto front and the Pareto-optimal models:

K. Stöbener, P. Klein, M. Horsch, K. Küfer, H. Hasse, Fluid Phase Equilib. 411, 33 – 42, 2016.
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Example (molecular model parameterization)

Pareto-optimal 2CLJ models satisfying all constraints

Self-organized patch plots1 visualizing the Pareto front and the Pareto-optimal models:

objective
space

parameter
space

K. Stöbener, P. Klein, M. Horsch, K. Küfer, H. Hasse, Fluid Phase Equilib. 411, 33 – 42, 2016.
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Two methods for visualizing an MCO problem

K. Stöbener, P. Klein, M. Horsch, K. Küfer, H. Hasse, Fluid Phase Equilib. 411, 33 – 42, 2016.

parameter space
(all of which is accessible)

Pareto-optimal 

parameterizations

objective space

accessible
part

unaccessible
part

Pareto front

objective
space

parameter
space

Pareto-optimal 2CLJQ models for oxygen
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Example notebook for Pareto front visualization

def cost_function(x, debug_output):
    if x[0] < 0 or x[1] < 1 or x[0] < salary*x[1]:
        return [math.inf, math.inf]
    expenses = x[0]
    acquired_equipment = (x[0] - salary*x[1]) / unit_cost
    upgraded_units = min(num_units, acquired_equipment, x[1]/fte_per_unit)

    y = [expenses, num_units - upgraded_units]
    return y

– In cell [1], replace the body  of cost_function(x, debug_output).
– The constant coefficients need to be included.
– It is advisable to implement a penalty for values outside the specified 

parameter space, since scipy.optimize will not be aware of constraints.
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Example notebook for Pareto front visualization

def random_parameters():

    max_expenses = num_units * (unit_cost + salary*fte_per_unit)

    expenses = random.uniform(0, max_expenses)
    total_labour_cost = random.uniform(0, expenses)

    return [expenses, total_labour_cost/salary]

objective_scale = [180000, 600]
sigma = 2

– In cell [1], replace the body of cost_function(x, debug_output).
– In cell [2], edit random_parameters() such that it returns a random point 

in parameter space, and objective_scale such that objective_scale[i] is 
of the order of variations expected in the outcome for objective y[i]. 
Increase/decrease sigma if you want weights to vary more/less.

– In cells [4] and [6], adjust local and global optimizer settings.
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Example notebook for Pareto front visualization

In cell [8], select the axes to be shown for the 2D projection (e.g., 0 and 1).

sbn.scatterplot(x=pareto_optimal_compromises[0], \
y=pareto_optimal_compromises[1], color="#002855")

In cell [6], adjust:

– number of parameters m and number of objectives n.

– number of points to be determined by linear combinations and by 
hyperboxing, respectively; their sum should be a square number.

– linear combinations only work for a convex Pareto front: It can 
happen that this part needs to be removed; in this case, the 
lists objective_space_lower and objective_space_upper need 
to be initialized appropriately.

– local and global optimizer settings.
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Example notebook for Pareto front visualization

In cell [8], select the axes to be shown for the 2D projection (e.g., 0 and 1).

sbn.scatterplot(x=pareto_optimal_compromises[0], \
y=pareto_optimal_compromises[1], color="#002855")
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Example notebook for Pareto front visualization

In cell [10], set square_size to the square root of the number of determined 
Pareto optimal solutions. Pass indices of the criteria for ordering (e.g., 0 and 1):

idx_order = arrange_indices(square_size, n, pareto_optimal_compromises, 0, 1)

investment into A investment into B investment into C

research KPI real-estate KPI internal support KPI
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Background of the model optimization problem

2CLJQ: Two LJ centers + quadrupole1

1S. Werth, K. Stöbener, P. Klein, K.-H.
 Küfer, M. Horsch, H. Hasse, Chem.
 Eng. Sci. 121, 110–117, 2015.

Fit to bulk properties

About 20 % overestimation of 
the surface tension
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Background of the model optimization problem

2CLJQ: Two LJ centers + quadrupole1 2CLJD: Two LJ + dipole2

1S. Werth, K. Stöbener, P. Klein, K.-H.
 Küfer, M. Horsch, H. Hasse, Chem.
 Eng. Sci. 121, 110–117, 2015;

2S. Werth, M. Horsch, H. Hasse, J.
 Chem. Phys. 144, 054702, 2016.
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Background of the model optimization problem

Non-polar: 1CLJ

Neon (Ne)
Argon (Ar)
Krypton (Kr)
Xenon (Xe)
Methane (CH4) 

  
Carbon monoxide (CO)
R11 (CFCl3)
R12 (CF2Cl2)
R13 (CF3Cl)
R13B1 (CBrF3)
R22 (CHF2Cl)
R23 (CHF3)
R41 (CH3F)
R123 (CHCl2-CF3)
R124 (CHFCl-CF3)
R125 (CHF2-CF3) 
R134a (CH2F-CF3)
R141b (CH3-CFCl2)
R142b (CH3-CF2Cl)
R143a (CH3-CF3) 
R152a (CH3-CHF2)
R40 (CH3Cl)
R40B1 (CH3Br)
CH3I
R30B1 (CH2BrCl) 
R20 (CHCl3)
R20B3 (CHBr3)
R21 (CHFCl2)

Oxygen (O2)
Carbon dioxide (CO2)
Carbon sulfide (CS2) 
Ethane (C2H6)
Ethylene (C2H4)
Acetylene (C2H2)
R116 (C2F6) 
R1114 (C2F4)
R1110 (C2Cl4)
Propadiene (CH2=C=CH2)
Propyne (CH3-C≡CH)

Isobutane (C4H10)
Cyclohexane (C6H12)
Methanol (CH3OH)
Ethanol (C2H5OH)
Formaldehyde (CH2=O)
Dimethyl ether (CH3-O-CH3)
Acetone (C3H6O)
Ammonia (NH3)
Methylamine (NH2-CH3)
Dimethylamine (CH3-NH-CH3)
R227ea (CF3-CHF-CF3)
Sulfur dioxide (SO2)
Ethylene oxide (C2H4O)

R32 (CH2F2) 
R30 (CH2Cl2)
R30B2 (CH2Br2)
CH2I2

R12B2 (CBr2F2) 
R12B1 (CBrClF2)
R10B1 (CBrCl3)
R161 (CH2F-CH3)
R150a (CHCl2-CH3) 
R140 (CHCl2-CH2Cl)
R140a (CCl3-CH3)
R130a (CH2Cl-CCl3)
R160B1 (CH2Br-CH3)
R150B2 (CHBr2-CH3)
R131b (CH2F-CCl3)
R123B1 (CHClBr-CF3)
R112a (CCl3-CF2Cl) 
R1141 (CHF=CH2)
R1132a (CF2=CH2)
R1140 (CHCl=CH2)
R1122 (CHCl=CF2) 
R1113 (CFCl=CF2)
R1113B1 (CFBr=CF2) 

+ 12 %

+ 20 %

+ 22 %

Fluorine (F2)
Chlorine (Cl2)
Bromine (Br2)
Iodine (I2) 
Nitrogen (N2)

Propylene (CH3-CH=CH2)
R846 (SF6)
R14 (CF4)
R10 (CCl4)
R113 (CFCl2-CF2Cl)
R114 (CF2Cl-CF2Cl)
R115 (CF3-CF2Cl) 
R134 (CHF2-CHF2) 
R150B2 (CH2Br-CH2Br)
R114B2 (CBrF2-CBrF2)
R1120 (CHCl=CCl2)

Dipolar: 2CLJD

Quadrupolar: 2CLJQ

Cyanogen (C2N2)
Cyanogen chloride (CClN )
Formic acid (CH2O2)
Ethylene glycol (C2H6O2)
TIP4P/2012 water (H2O)
Hydrazine (N2H4)
Monomethylhydrazine (CH6N2)
Dimethylhydrazine (C2H8N2)
Perfluorobutane (C4F10)
Ethyl acetate (C4H8O2)
HMDSO (C6H12OSi2)
D4 (C8H24O4Si4)

Dimethyl sulfide (CH3-S-CH3)
Hydrogen cyanide (HCN)
Acetonitrile (NC2H3)
Thiophene (SC4H4)
Nitromethane (CH3NO2)
Phosgene (COCl2)
Benzene (C6H6)
Toluene (C7H8)
Chlorobenzene (C6H5Cl)
Dichlorobenzene (C6H4Cl2)
Cyclohexanol (C6H11OH)
Cyclohexanone (C6H10O)

Multicentric United Atom Models

Literature 
models by J. 
Stoll, H. Hasse, J. 
Vrabec et al., 
2001 – 2016
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MCO problem specification for 2CLJQ models

1M. Bortz et al., Comput. Chem. Eng. 60, 354, 2014;   2Stöbener et al., Fluid Phase Equilib. 411, 33, 2016.

a model parameters

(here, a = 4)

b optimization criteria

(here, b = 3)

● LJ size parameter σ

● LJ energy parameter ε

● Model elongation L

● Quadrupole moment Q

● Saturated liquid density ρ'

● Saturated vapor pressure ps

● Vapor-liquid surface tension γ

Dimension of Pareto set d ≤  b – 1.
Dimension of Pareto set d ≤ a.

d = min( a, b – 1 ). (here, d = 2)
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MCO problem specification for 2CLJQ models

1M. Bortz et al., Comput. Chem. Eng. 60, 354, 2014;   2Stöbener et al., Fluid Phase Equilib. 411, 33, 2016.

Multicriteria optimization problem

Simultaneously minimized objective functions f
ξ
 with ξ ∊ {ρ', ps, γ} given by

Sandwiching

Alternating construction of inner (reachable) and outer (unreachable) 
approximations, in regions where the Pareto set is locally convex.

Hyperboxing

In non-convex regions (hyperboxes), Pascoletti-Serafini scalarization is 
used to formulate an appropriately constrained single-criterion problem.

f ξ=〈δξ
2
〉0.55T c

exp
<T<0.95T c

exp= lim
N→∞

1
N+1

∑
i=0

N

(1−
ξ

sim
(T )

ξ
exp

(T ))T /T c=0.55+0.4i/N

2

(here: N = 9).
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The Pareto knee

(Example: Two-criteria optimization of molecular models.)

A Pareto knee 
is a highly 
curved region 
on the Pareto 
front.
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The Pareto knee

The viability of models close to a Pareto knee is comparably resilient even
when priorities shift. Example: Two-criteria optimization of molecular models.

A Pareto knee 
is a highly 
curved region 
on the Pareto 
front.

In general, a 
systematic 
exploration
of the Pareto 
front is 
needed to find 
such regions.
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Pre-existing models’ performance

1J. Vrabec, J. Stoll, H. Hasse, J. Phys. Chem. B 105(48), 12126–12133, 2001;
2S. Werth, K. Stöbener, P. Klein, K.-H. Küfer, M. Horsch, H. Hasse, Chem. Eng. Sci. 121, 110–117, 2015.

surface tension: avg. 18 %

vapor pressure: avg. 2.2 %

sat. liq. density: avg. 0.3 %
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Pre-existing models vs. the Pareto knee

1J. Vrabec, J. Stoll, H. Hasse, J. Phys. Chem. B 105(48), 12126–12133, 2001;
2S. Werth, K. Stöbener, P. Klein, K.-H. Küfer, M. Horsch, H. Hasse, Chem. Eng. Sci. 121, 110–117, 2015;

3K. Stöbener, P. Klein, M. Horsch, K.-H. Küfer, H. Hasse, Fluid Phase Equilib. 411, 33–42, 2016.

surface tension: avg. 18 % → 12 %

vapor pressure: avg. 2.2 % → 3.5 %

sat. liq. density: avg. 0.3 % → 1.4 %
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Modelling paradigm shift due to MCO

The art of molecular modelling

An expert modelling artist designs and publishes
•  a single optimized model for a particular fluid,
•  according to his choice of criteria (often unknown to the public),
•  users are passive, they have to live with the artists' decision.

The science of molecular modelling

For well-characterized model classes and multiple optimization criteria,
• the dependence of thermodynamic properties on the model
  parameters is determined and correlated,
• the deviation between model properties and real fluid behaviour
  is characterized, and the Pareto set is published,
• users can design their own tailored model with minimal effort.
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