AUIS ENGR 352 (Thermodynamics), Section 1, Course Assignment 2

Deadline:¹ October 15, 2017 Tutorial Discussion: October 22, 2017

1) Polytropic process (with *pVⁿ* constant)

For a process taking place in a closed system containing a gas, assume that the pressurevolume relationship is given by $pv^{1.4}$ = const.; the process starts with initial conditions given by p_1 = 150 kPa and V_1 = 26 l, and it ends with the volume V_2 = 57 l. Determine the work **done by** the gas, assuming that the expansion occurs without any friction or other dissipation effects.

2) Heat transfer during an isobaric process

R134a (n = 100 mol) is heated isobarically from $T_1 = 0$ °C to $T_2 = 100$ °C at p = 700 kPa.

- a) Sketch how this transition is represented in a log *p*-*h* diagram, including the saturation lines, i.e., the bubble line and the dew line, and the critical point.
- **b)** Using the log *p*-*h* diagram for R134a, determine the heat transferred to the system during the process, assuming that the only form of work which is done is expansion work.
- c) Repeat this with the NIST database as a source, and also determine how much work is done.
- d) Repeat this, now assuming that this process takes two hours and occurs under continuous stirring (still isobarically at p = 700 kPa), where additional work done by an agitator, operating at 100 W, has to be taken into account.

R134a has a molar mass of M = 102.0 g mol⁻¹. The log *p*-*h* diagram from the lecture is available on the AUIS Learning Management System, which also includes a link to the NIST WebBook.

3) Vapor-liquid equilibrium of water

A closed, rigid tank with the volume V = 100 l initially contains both liquid water and steam in equilibrium at $p_1 = 400$ kPa, with the quality x = n'' / (n' + n'') = n''/n given by $x_1 = 0.08$. Heat is transferred to the tank until a pressure of $p_2 = 450$ kPa is reached. Assume that the process is isochoric, since the tank is rigid, and that no work is done.

a) How much water is in the tank? Give m or n. b) How much heat is transferred?

Thermodynamic properties of water are well accessible; please indicate which source you use.

4) Ideal gas law

A rigid tank, whose volume $V = 1.5 V_1$ is constant, is divided into two parts by a partition. One side, with the volume V_1 , contains an ideal gas initially at $T_1 = 400$ K, while the other side with the volume 0.5 V_1 is evacuated. The partition is removed, and the gas expands adiabatically (assume: polytropically, $pv^{1.4}$ const.), to fill the whole tank (state 2, at $T = T_2$). Then heat is transferred until the pressure equals the initial pressure (state 3, at $T = T_3$). Determine T_2 and T_3 .

5) Compressibility factor

Using the same source as for problem 3, determine the compressibility factor z = pv/RT and its deviation from unity (1 - z) for saturated steam at vapor pressures of p = 1, 10, 100, and 1000 kPa. What qualitative behavior do you observe for the dependence of 1 - z on the pressure?

¹ Each problem contributes 0.5% to the overall grade. Submissions (paper only), individually or in groups of two, can be handed in on October 15 (after the lecture), or deposited in the mailbox (room B-F2-01) by October 14.