AUIS ENGR 352 (Thermodynamics) - Fall 2017 - Section 1

November 26, 2017

Quiz as Replacement for Assignment 3

In a reversible Carnot refrigeration cycle with $m=100 \mathrm{~g}$ of air as the working fluid, to be considered here as an ideal gas with the polytropic exponent $\kappa=c_{p} / c_{v}=1.40$, the isothermal expansion occurs at a temperature of $T_{\text {low }}=250 \mathrm{~K}$, during which the heat transferred to the working fluid is given by $Q_{\text {Tlow }}=+3.40 \mathrm{~kJ}$. The isothermal compression occurs at $T_{\text {high }}=300 \mathrm{~K}$, and the volume of the working fluid subsequent to the isothermal compression is $V_{4}=0.01 \mathrm{~m}^{3}$.

A Carnot cycle consists of two isothermal and two adiabatic transitions. The universal gas constant is $R=8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, and the working fluid air has a molar mass of $\mathrm{M}=28.97 \mathrm{~g} \mathrm{~mol}^{-1}$. The volumes of the states in a reversible Carnot refrigeration cycle are related by $V_{2} V_{4}=V_{1} V_{3}$, and the ratio of the heats is given by the ratio of the temperatures, using appropriate signs.

Determine

a) the pressure p_{1}, p_{2}, p_{3}, and p_{4} corresponding to each of the four states;
b) the work W_{12}, W_{23}, W_{34}, and W_{41} corresponding to each of the four transitions; state clearly whether the value that you give is the work done to or work done by the fluid;
c) the net work $W_{\text {net }}=W_{12}+W_{23}+W_{34}+W_{41}$ done to the fluid during as it undergoes this cycle once, and the coefficient of performance $\varepsilon=Q_{\text {Tlow }} / W_{\text {net }}$.

Note: It is possible to solve c) without solving a) and b) previously.

The reversible work done to a (stationary) system is given by $W=-\int p d V$.
Recall that for an ideal gas, $p V^{k}$ is constant during a transition if it is both reversible and adiabatic. Hence, combining this with the ideal gas law $p V=n R T$, since n is constant here, $p^{1-\kappa} T^{\kappa}$ is also constant during reversible adiabatic transitions. For isothermal transitions, pV is constant.

volume

