AUIS ENGR 352 (Thermodynamics) - Fall 2017 - Section 1

November 26, 2017

Quiz as Replacement for Assignment 3

In a **reversible Carnot refrigeration cycle** with m = 100 g of **air as the working fluid**, to be considered here as an ideal gas with the polytropic exponent $\kappa = c_p/c_v = 1.40$, the isothermal expansion occurs at a temperature of $T_{\text{low}} = 250$ K, during which the heat transferred to the working fluid is given by $Q_{T \text{low}} = +3.40$ kJ. The isothermal compression occurs at $T_{\text{high}} = 300$ K, and the volume of the working fluid subsequent to the isothermal compression is $V_4 = 0.01$ m³.

A Carnot cycle consists of two isothermal and two adiabatic transitions. The universal gas constant is $R = 8.3145 \text{ J K}^{-1} \text{ mol}^{-1}$, and the working fluid air has a molar mass of $M = 28.97 \text{ g mol}^{-1}$. The volumes of the states in a reversible Carnot refrigeration cycle are related by $V_2V_4 = V_1V_3$, and the ratio of the heats is given by the ratio of the temperatures, using appropriate signs.

Determine

- a) the **pressure** p_1 , p_2 , p_3 , and p_4 corresponding to each of the four states;
- b) the **work** W_{12} , W_{23} , W_{34} , and W_{41} corresponding to each of the four transitions; state clearly whether the value that you give is the work **done to** or work **done by** the fluid;
- c) the **net work** $W_{net} = W_{12} + W_{23} + W_{34} + W_{41}$ done to the fluid during as it undergoes this cycle once, and the **coefficient of performance** $\varepsilon = Q_{Tlow} / W_{net}$.

Note: It is possible to solve c) without solving a) and b) previously.

The reversible work **done to** a (stationary) system is given by $W = -\int p \, dV$.

Recall that for an ideal gas, pV^{κ} is constant during a transition if it is both reversible and adiabatic. Hence, combining this with the ideal gas law pV = nRT, since *n* is constant here, $p^{1-\kappa}T^{\kappa}$ is also constant during reversible adiabatic transitions. For isothermal transitions, pV is constant.

You have 55 minutes from the moment in which the beginning of the quiz is announced.