ENGR 352 - THERMODYNAMICS - FALL 2017 - TERM EXAM I

- You have 55 minutes from the moment that the beginning of the exam is announced.
- Below you find three exam problems. Each carries the same weight, i.e., 7.5 credits (out of 100 credits for the course). At most 15 credits can be gained from the present term exam. If you choose to work on two problems, the outcome of these two problems will count. If you choose to work on three problems, the two best outcomes count, whereas the problem with the least amount of credits obtained is disregarded.
- Make sure that every sheet of paper you submit contains your name and student ID. Any access to means of communication, e.g., cell phones, constitutes a case of cheating irrespective of what is communicated.
[Problem I.1] A constant amount of molecular nitrogen N_{2}, with $m=0.05 \mathrm{~kg}$, which is here to be regarded as an ideal gas, undergoes the following sequence of transitions:
- State 1 to state $2(1 \rightarrow 2)$, isothermal compression from $p_{1}=60 \mathrm{kPa}$ to $p_{2}=100 \mathrm{kPa}$.
- State 2 to state $3(2 \rightarrow 3)$, isobaric expansion until a volume of $V_{3}=75 \mathrm{I}$ is reached.
- State 3 to state $1(3 \rightarrow 1)$, isochoric cooling until the pressure $p_{1}=60 \mathrm{kPa}$ is reached.

Show the states and the transitions between them in a p-V diagram.
Determine the total amount of work done by the gas (note: opposite sign as work done to the gas) and the total amount of heat transferred to the gas for the whole process $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$.

The universal gas constant is $R=8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. The molar mass of N_{2} is $\mathrm{M}=28.01 \mathrm{~g} \mathrm{~mol}^{-1}$. Note that this series of transitions is a cycle, since the initial and final states are the same.
[Problem I.2] A piston-cylinder device, which maintains a constant pressure $p=80 \mathrm{kPa}$ inside, contains $n=15 \mathrm{~mol}$ water, part of which are steam and part of which are liquid water. This system undergoes a transition during which part of the steam condenses, by which the volume decreases to 50% of the initial volume. In the final state, $n^{\prime}=14.4 \mathrm{~mol}$ of the water are liquid, while the remaining $n^{\prime \prime}=0.6 \mathrm{~mol}$ belong to the vapor phase.
How much heat is transferred from the water to the surroundings, and how much work is done to the water? Assume that the system is stationary and that no dissipation occurs.

For water at $p=80 \mathrm{kPa}$, the boiling temperature is $T=366.6 \mathrm{~K}$, the saturated liquid density is $\rho^{\prime}=53.45 \mathrm{~mol} \mathrm{l}^{-1}$, the saturated vapor density is $\rho^{\prime \prime}=26.60 \mathrm{~mol} \mathrm{~m}^{-3}$, and the molar enthalpy of vaporization is $\Delta h^{\vee}=h^{\prime \prime}-h^{\prime}=40.95 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Water has a molar mass of $M=18.02 \mathrm{~g} \mathrm{~mol}^{-1}$.
[Problem I.3] Heat transfer during isobaric processes is characterized by the specific isobaric heat capacity $c_{p}=(\partial h / \partial T)_{p}$. Thermodynamic data for liquid butane at $p=2500 \mathrm{kPa}$ include:

$$
\begin{array}{lllll}
p=2500 \mathrm{kPa} \text { and } T=360.0 \mathrm{~K}: & v=0.002018 \mathrm{~m}^{3} \mathrm{~kg}^{-1} & u=418.2 \mathrm{~kJ} \mathrm{~kg}^{-1} & c_{v}=1.964 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1} \\
p=2500 \mathrm{kPa} \text { and } T=370.0 \mathrm{~K}: & v=0.002089 \mathrm{~m}^{3} \mathrm{~kg}^{-1} & u=447.2 \mathrm{~kJ} \mathrm{~kg}^{-1} & c_{v}=2.007 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1} \\
p=2500 \mathrm{kPa} \text { and } T=380.0 \mathrm{~K}: & v=0.002175 \mathrm{~m}^{3} \mathrm{~kg}^{-1} & u=477.6 \mathrm{~kJ} \mathrm{~kg}^{-1} & c_{v}=2.054 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1} \\
p=2500 \mathrm{kPa} \text { and } T=390.0 \mathrm{~K}: & v=0.002286 \mathrm{~m}^{3} \mathrm{~kg}^{-1} & u=509.8 \mathrm{~kJ} \mathrm{~kg}^{-1} & c_{v}=2.107 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}
\end{array}
$$

Determine the specific isobaric heat capacity of liquid butane at $p=2500 \mathrm{kPa}$ and $T=375 \mathrm{~K}$.
You may interpolate between data points. Recall that the specific internal energy and the specific enthalpy are related by $h=u+p v$. The molar mass of butane is $M=58.12 \mathrm{~g} \mathrm{~mol}^{-1}$.

