
INF203 10th June 2025

Digitalisering på Ås

Institutt for datavitskap

INF203
June advanced programming project

2 Object orientation in practice

2.1 Object orientation 2.4 Factories
2.2 Encapsulation 2.5 Data-code co-design
2.3 E-R diagrams 2.6 Data interoperability

210th June 2025INF203

Get prepared: What will be submitted?

Submit the final complete project material through Canvas by Saturday, 21st
June 2025, 17.30 CEST. This includes:

– Your complete code base.
– The project report in PDF format. The project report must be written

using LaTeX, but do not submit the LaTeX sources, only the PDF.
– The requirements register as a spreadsheet in ODS or XLSX format,

including columns stating whether the functionality was actually
implemented (y/n), and whether it was validated or tested (y/n).

– Any simulation output or data that you would want to share as long as
they are not very large. Do not include any extremely large files.

The above should be uploaded on Canvas in the form of a single zip (or
tar.bz2 or tar.gz) archive.

310th June 2025INF203

Style guidelines for the report

1) The report’s purpose is to help the examiners grade your submission.

2) It must be written in LaTeX – any style will be good. Any length in
number of pages is allowed. The PDF must be less than 4 MB in size.

3) Be concise.

4) The examiners will read the code and the requirements register. But
the report can help the examiners figure out where to look. So it helps
to include pointers to a method and source filename, or to a labelled
element of the requirements register when you are referring to it.

5) Do not include any code fragments longer than seven lines of code.
Better explain yourselves using pseudocode or diagrams if you want to
explain any parts of code that are more complex.

410th June 2025INF203

Style guidelines for the report

6) This is not an academic text, and it does not matter if the English is not
perfect. Please don’t run it through an LLM for language polishing.

7) You do need to cite academic references if you use them, e.g. when
comparing to literature data, or when implementing methods that we
did not discuss in the lecture. References are not needed for the
methods that we discussed in the lecture, such as the test area method.

8) Visualize your simulation results using diagrams. These should follow
the usual common-sense principles for good use of diagrams.

9) Do not include any screenshots.

10) The external examiner does not speak Norwegian, and the appeals
examiner might not speak Norwegian. To make yourselves under-
stood, all of the comments, requirements, and report must be English.

5

Suggested structure for the report

I. Introduction

(a) Group composition and responsibilities. (b) Shared repository and tools for
collaboration. (c) Agile methodology and requirements analysis. (d) User guide.

II. Implementation

(a) Code and class structure. (b) Commenting. (c) Advanced OOP. (d) Python package.

III. Functionality and validation

(a) Testing and validation strategy. (b) Initial configuration and I/O. (c) Pair potential
and Monte Carlo method. (d) Test area method and surface tension calculation.

IV. Sampling and data analysis

(a) Equilibration. (b) Uncertainty. (c) Console output. (d) Data processing for diagrams.

V. Simulation results

(a) Vapour-only reference system. (b) Vapour-liquid reference system. (c) Any other
results. (d) Comparison to results from the literature.

INF203 10th June 2025

Digitalisering på Ås

Institutt for datavitskap

2 OOP in practice

2.5 Data-code co-design
2.6 Data interoperability

7

 Country

Population of the country is the sum

of cities’ populations. (Requires up-

date when changing city population.)

Each city needs a country. (If deallo-

cated, move cities to “null country”.)

CRC cards: Class – responsibilities – collaborations

 Country

ID

name

population

register a city

deallocate the country

In structured or procedural programming, it is comparably easy to analyse a
code even on a line-by-line basis and make statements about the execution
state. These can take the form of invariants (conditions that are always met).

Classes in object oriented programming have a much more flexible control
flow, as their methods can be called at any time and in any order. It can help to
make the invariants explicit during design, e.g., using CRC cards as a tool.

City

responsibilities collaborations (backside can be used for invariants)

class

8

Designing classes: Entity-relationship diagrams

particular: object relationship property

universal: class relation attribute

entity

entity type relationship type

(sometimes: attribute)

(sometimes: attribute type)
individual

concept (in OWL: ObjectProperty) (in OWL: DatatypeProperty)

More on entity-relationship diagrams:
– Silberschatz et al., Database System Concepts, Chapter 6
– https://en.wikipedia.org/wiki/Entity-relationship_model

This was also an entity-relationship diagram:

 City

ID

name

population
 Person

ID

name

street

city Employee

salary

 Student

tot_credits

 Instructor

rank

 Secretary

hours_per_week

 Country

ID

name

city_country
isCityInCountry isCountryOfCity

“every City is in such a relationship”

“it is an N-to-1 relation from Cities to Countries”

https://en.wikipedia.org/wiki/Entity-relationship_model

9

Difference between E-R use in databases and OOP

 emne

emnekode

emnetittel

blokk

studiepoeng

 tilsett

tilsett_id

etternamn

førenamn

epost

stillingsnemning

institutt

 emneansvar

studieår tilsett_idemnekode

In a database schema, objects are identified through primary keys (IDs), and
their relationship to others are give by foreign keys, i.e., other objects’ IDs.
For example, above, an “emneansvar” entry contains a “tilsett_id” number.

In OOP, we can do this the same way, with a registry of objects, e.g. using a
Python dictionary. But normally, that would be poor style. The standard way
of doing this is: Holding an object reference to the object as an attribute.

INF203 10th June 2025

Digitalisering på Ås

Institutt for datavitskap

2 OOP in practice

2.5 Data-code co-design
2.6 Data interoperability

11

DIKW: Data, information, knowledge, and wisdom

Hierarchy of data, information, know-

ledge, and wisdom (DIKW pyramid1, 2).
1J. Rowley, J. Inform. Sys. 33: 163–180,

 doi:10.1177/0165551506070706, 2009.
2B. Schembera, in Proc. DCLXVI 2024, pp. 122–132,

 Springer, doi:10.1007/978-3-031-89274-5_9, 2025.

wisdom

knowledge

information

data
Syntactic interoperability: Data

exchanged in an agreed format.

Semantic interoperability: Data become

information if their meaning is agreed.

Epistemic metadata documentation:

Establish the knowledge status.

Pragmatic competency and interopera-

bility, including agreed good practices.

https://dx.doi.org/10.1177/0165551506070706
https://dx.doi.org/10.1007/978-3-031-89274-5_9
https://www.kg-alliance.org/

12

Basic file I/O in Python

File objects are used for I/O from and to files. Opening:

f_obj = open(filename_init, 'r') or f_obj = open(filename_init, 'w') etc.

We can write into a file just the same way as to the command line:

print("Value of x:", x, sep='\t', end='\n', file=f_obj)

The most direct way of doing file input is to read the whole content as a string:

str = f_obj.read() # now str is the file’s whole content as a string

Close the file object once you are done: f_obj.close()

It is of course also possible to use libraries for I/O in various formats.

13

XYZ format for molecular configurations/trajectories

There is not much to say about the XYZ format. It is an easy-to-write format for
configurations and trajectories (sequences of configurations) with one line per
atom. See e.g. on Wikipedia: https://en.wikipedia.org/wiki/XYZ_file_format

The JMol tool,1 among others, can be used to animate the trajectories.

You can use this to visually detect major problems with your simulation run.
This is also a standard (if unelegant) format for exchanging trajectories.

1https://jmol.sourceforge.net/

https://en.wikipedia.org/wiki/XYZ_file_format
https://jmol.sourceforge.net/

14

JSON in digital infrastructures

JSON is often used for data ingest & extraction into/from DBs via RESTful APIs:

– JSON is a hierarchical format, in which one element can contain other
elements; in this sense it is equivalent to XML, but with less overhead.

– JSON can be used as a type in relational databases including MySQL,1
i.e., JSON formatted data can be ingested without transformation.

– It is also used in non-relational DBs; e.g., MongoDB is based on JSON.2

– The hierarchical structure – transitivity of the containment relation – limits
the way in which objects can be connected to each other (trees only).

– Data in a JSON file are self-contained, there is no standard way to
include external resources; except via “JSON linked data” (JSON-LD).

1 https://dev.mysql.com/doc/refman/8.0/en/json.html
2 https://docs.mongodb.com/guides/server/introduction/

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://docs.mongodb.com/guides/server/introduction/

15

JSON example input file
{

"setup": {
"Lx": 5,
"Ly": 40,
"Lz": 5,
"compartments": [

{
"density": 0.02,
"volume_fraction": 0.4

}, {
"density": 0.73,
"volume_fraction": 0.2

}, {
"density": 0.02,
"volume_fraction": 0.4

}
]

},
"steps": {

"total": 100000,
"reset_sampling_at": [40, 10000, 20000]

},
"console_output": {

"frequency": 50
},
…

…
"configuration_output": {

"initial": "data/vle-0.80-reference_config_init.xyz",
"final": "data/vle-0.80-reference_config_final.xyz"

},
"trajectory_output": {

"frequency": 200,
"file": "data/vle-0.80-reference_trajectory.xyz"

},
"control_parameters": {

"maximum_displacement": 0.125,
"test_area_distortion": [

{
"sx": 0.999995,
"sy": 1.00001,
"sz": 0.999995

}, {
"sx": 1.000005,
"sy": 0.99999,
"sz": 1.000005

}
]

}
}

https://home.bawue.de/~horsch/teaching/inf203/material/vle-0.80-reference.json

16

Loading structured data in JSON format

Explained here: https://docs.python.org/3/library/json.html

Just loading data from a JSON file is extremely simple, e.g.:

import json
jsonfile = open('vle-0.80-reference.json', 'r')
content = json.load(jsonfile)
jsonfile.close()

Now, content is a dictionary containing all the data from the JSON example.

print(content['console_output']['frequency'])

The above command will print the corresponding data item, which is 50.

https://docs.python.org/3/library/json.html

1710th June 2025INF203

Semantic technology can facilitate the integration of data and software into a
coherent framework, permitting multiple components to become
interoperable.

On the semantic web, data and metadata are provided as RDF triples:

Resource description framework (RDF)

Triples: Individual Relation Individual. (Subject Predicate Object.)

Example: The fox f eats the chicken c.

RDF is the Resource Description Framework, which specifies the semantic web.

JSON-LD is an extension of JSON by which it can express RDF triples.

(Other kind of triples: Individual “a” Concept. Example: f a Fox.)

1810th June 2025INF203

JSON-LD based data exchange

JSON: JavaScript Object Notation
JSON-LD: Extension of JSON to deal with linked data (knowledge graphs)

JSON-LD Playground (https://json-ld.org/playground/)

https://json-ld.org/playground/

19

JSON-LD based data exchange

JSON: JavaScript Object Notation
JSON-LD: Extension of JSON to deal with linked data (knowledge graphs)

JSON-LD Playground (https://json-ld.org/playground/)

Google’s Schema Markup Validator (https://validator.schema.org/)

Google’s Rich Results Test (https://search.google.com/test/rich-results)

https://json-ld.org/playground/
https://validator.schema.org/
https://search.google.com/test/rich-results

INF203 10th June 2025

Digitalisering på Ås

Institutt for datavitskap

INF203
June advanced programming project

2 Object orientation in practice

2.1 Object orientation 2.4 Factories
2.2 Encapsulation 2.5 Data-code co-design
2.3 E-R diagrams 2.6 Data interoperability

