
INF203 13th June 2025

Digitalisering på Ås

Institutt for datavitskap

INF203
June advanced programming project

3 Uncertainty, validation, and testing

3.1 Unit testing 3.4 Holistic validation
3.2 Reproducibility 3.5 Autocorrelated data
3.3 Formal analysis 3.6 Block averaging

213th June 2025INF203

Different kinds of tests

Unit tests

Test one piece of code, e.g., one method, for right arguments return value.→

Integration tests

Test concrete interactions between parts of the code, do they fit together?

Acceptance tests

Holistic validation: Run the complete code/system, do y/n correctness checks.

Regression tests

Added once a bug is detected and fixed. Check that the bug does not return.

313th June 2025INF203

What did we overlook?

Unit tests

Test one piece of code, e.g., one method, for right arguments return value.→

Integration tests

Test concrete interactions between parts of the code, do they fit together?

Acceptance tests

Holistic validation: Run the complete code/system, do y/n correctness checks.

Regression tests

Added once a bug is detected and fixed. Check that the bug does not return.

import pytest

@pytest.mark.parametrize(

"input1, input2, input3",

[(1, 2, 3), (1
, 3, 4), (3

.1, 4.0, 7.1)]

)
def testAddition(input1, input2, input3):

assert in
put1 + input2 == pytest.approx(input3)

Why would we never actually do this?

INF203 13th June 2025

Digitalisering på Ås

Institutt for datavitskap

3 Validation

3.3 Formal program analysis
3.4 Holistic validation
3.5 Auto- and decorrelation
3.6 Time series block averaging

513th June 2025INF203

Preconditions and postconditions

For purposes of formal analysis, the program flow is analysed step by step, e.g.,
at the instruction (statement) level, at the level of blocks of code that form a
coherent unit, or at the level of functions or methods.

Precondition: State of the program at a point directly before the considered unit.
This may include assumptions taken from the design contract or specification.

Postcondition: State of the program at a point directly after the considered unit,
assuming that the precondition was fulfilled at the point directly before it.

Example

As part of a development project, we need a function grtfrac(x, y)
that takes two floating-point arguments and returns the one with
the greater fractional part; e.g., grtfrac(2.7, 3.6) is to return 2.7,
because “.7” is greater than “.6”. In design by contract, the caller,
not the called method needs to guarantee the precondition.

6

Preconditions and postconditions

def grtfrac(x, y):
 if (x - x//1) > (y - y//1):
 return x
 else:
 return y

if (x - x//1) > (y - y//1):

return x return y

initial state S0

true false
S1 S2

final state S3
final state S4

transitions S0 → S1, S2

transition S2 → S4transition S1 → S3

S0: x and y are floating-point numbers (by specification).
S1: x, y as above; the fractional part of x is greater than that of y.
S2: x, y as above; the fractional part of y is greater than that of x, or equal.
S3: The fractional part of x is the greater one, and x was returned.
S4: The fractional part of y is greater (or they are equal); y was returned.

7

Verification, validation, and testing

Verification: Proof that the developed product complies with its specification.

– Where possible, provide a rigorous logical/mathematical proof;
alternatively, provide documents following agreed standards/procedures.

Testing: Use-case driven evaluation of the final (or alpha, or beta) product.

– The considered use cases should be representative.
– They should be as unrelated as possible to any concrete scenarios

considered during development, including the validation process.

develop-
ment

deploy-
ment

systematic

empirical

8

Verification, validation, and testing

Verification: Proof that the developed product complies with its specification.

– Where possible, provide a rigorous logical/mathematical proof;
alternatively, provide documents following agreed standards/procedures.

Testing: Use-case driven evaluation of the final (or alpha, or beta) product.

– The considered use cases should be representative.
– They should be as unrelated as possible to any concrete scenarios

considered during development, including the validation process.
– Ideally, conducted by prospective users; if unavailable, “play the user.”

develop-
ment

deploy-
ment

systematic

empirical

developer-
driven

user-driven

9

Verification, validation, and testing

Verification: Proof that the developed product complies with its specification.

– Where possible, provide a rigorous logical/mathematical proof;
alternatively, provide documents following agreed standards/procedures.

Validation: Empirical evaluation to what extent user the requirements are met.

– All requirements need to be covered and demonstrated at least once.
– Ideally, requirements are not identical with the specification. They should

be user-oriented; e.g., epics and user stories in a requirements analysis
from agile software engineering. Feedback from users is needed.

Testing: Use-case driven evaluation of the final (or alpha, or beta) product.

– The considered use cases should be representative.
– They should be as unrelated as possible to any concrete scenarios

considered during development, including the validation process.
– Ideally, conducted by prospective users; if unavailable, “play the user.”

10

Verification, validation, and testing

Verification: Proof that the developed product complies with its specification.

– Where possible, provide a rigorous logical/mathematical proof;
alternatively, provide documents following agreed standards/procedures.

Validation: Empirical evaluation to what extent user the requirements are met.

– All requirements need to be covered and demonstrated at least once.
– Ideally, requirements are not identical with the specification. They should

be user-oriented; e.g., epics and user stories in a requirements analysis
from agile software engineering. Feedback from users is needed.

Testing: Use-case driven evaluation of the final (or alpha, or beta) product.

– The considered use cases should be representative.
– They should be as unrelated as possible to any concrete scenarios

considered during development, including the validation process.
– Ideally, conducted by prospective users; if unavailable, “play the user.”

Remark

Verification always has the meaning that something is demon-
strated to be true, particularly by logical reasoning. Validation
and testing have many meanings to different communities; the
distinction here is common in AI (e.g., validation set vs. test set).

1110th January 2022CO2412Y session 02

Verification, validation, and testing

Verification: Proof that the developed product complies with its specification.

– Where possible, provide a rigorous logical/mathematical proof;
alternatively, provide documents following agreed standards/procedures.

Validation: Empirical evaluation to what extent user the requirements are met.

– All requirements need to be covered and demonstrated at least once.
– Ideally, requirements are not identical with the specification. They should

be user-oriented; e.g., epics and user stories in a requirements analysis
from agile software engineering. Feedback from users is needed.

Testing: Use-case driven evaluation of the final (or alpha, or beta) product.

– The considered use cases should be representative.
– They should be as unrelated as possible to any concrete scenarios

considered during development, including the validation process.
– Ideally, conducted by prospective users; if unavailable, “play the user.”

Note

• The above is what we mean by formal verification.

• There can be no verification without a specification.

• It can be done by humans, using code or pseudocode.

• It can also be done computationally (automated verification); in
that case, either the programming language must be restricted
severely, or it is only a model of the program that can be verified.

• The latter is known as model checking. It is limited by the
accuracy and extent of the information provided in the model.

INF203 13th June 2025

Digitalisering på Ås

Institutt for datavitskap

3 Validation

3.3 Formal program analysis
3.4 Holistic validation
3.5 Auto- and decorrelation
3.6 Time series block averaging

1313th June 2025INF203

What even is reproducibility?

Reproducibility definitions: Discussed in a review by Plesser.1

1H. E. Plesser, Frontiers Neuroinform. 11: 76, doi:10.3389/fninf.2017.00076, 2018.

ACM definitions:
– Repeatability Same team, same procedure, same lab.→
– Replicability Different team, same procedure, same or different lab.→
– Reproducibility All is different, except for the investigated quantity.→

The attempts are successful if “the [same] measurement can be obtained with
stated precision,” i.e., within the error bars that were part of the data item.

But that was only what ACM
says. There are a myriad of
ideas about this around.

https://dx.doi.org/10.3389/fninf.2017.00076

14

What even is reproducibility?

Reproducibility definitions: Discussed in a review by Plesser.1

Consider the case where a validator b contradicts findings by a:

1) Reseacher a did κ (consistent with κ’’) and found φ.

 Here, a also made the positive reproducibility claim ψ = □(φ’’ | κ’’).

2) Reseacher b did γ, consistent with κ’’, and found ζ ≠ φ.

1H. E. Plesser, Frontiers Neuroinform. 11: 76, doi:10.3389/fninf.2017.00076, 2018.

https://dx.doi.org/10.3389/fninf.2017.00076

15

What even is reproducibility?

Reproducibility definitions: Discussed in a review by Plesser.1

Common formulation and schema for reproducibility claims (RCs):

«Whenever research process κ’’ is carried out, it must lead to the outcome φ’’.»

Consider the case where a validator b contradicts findings by a:

1) Reseacher a did κ (consistent with κ’’) and found φ (consistent with φ’’).

 Here, a also made the positive reproducibility claim ψ = □(φ’’ | κ’’).

2) Reseacher b did γ, consistent with κ’’, and found ζ, inconsistent with φ’’.

 Here, b made the negative reproducibility claim ◊(¬φ’’ | κ’’) ≡ ¬□(φ’’ | κ’’) ≡ ¬ψ.

3) What is relevant there is the contradiction between ψ and ¬ψ.

Claim ψ is usually implicit, ascribed to a based on unwritten community rules.2

1H. E. Plesser, Frontiers Neuroinform. 11: 76, doi:10.3389/fninf.2017.00076, 2018.
2In Proc. FOIS 2023, pp. 302–317, doi:10.3233/faia231136, 2023.

https://dx.doi.org/10.3389/fninf.2017.00076
https://dx.doi.org/10.3233/faia231136

16

Orthodata and paradata in reproducibility claims1

reference
position ortho

para

meta

data orthodata

epistemic metadata

paradata

reproduci-
bility claim

annotate

sub-
stantial to

“must get
right”

unsubstan-
tial to “it’s OK

to deviate
from this”

Reproducibility definitions: Discussed in a review by Plesser.2

1Epistemic metadata in molecular modelling: Second-stage case-study, doi:10.5281/zenodo.7608074, 2023.
2H. E. Plesser, Frontiers Neuroinform. 11: 76, doi:10.3389/fninf.2017.00076, 2018.

https://dx.doi.org/doi:10.5281/zenodo.7608074
https://dx.doi.org/10.3389/fninf.2017.00076

17

Modes of reasoning

formal methods

numerical methods

statistical methods

remit of computational methods

18

Modes of reasoning

formal methods

numerical methods

statistical methods

logical deduction

mathematical deduction

induction

abduction

abduction

human cognition employing abduction, deduction, and induction

remit of computational methods

19

Why don’t more people use formal verification1?

1C. Imbert, V. Ardourel, Philos. Sci. 90(2): 376–394, doi:10.1017/psa.2022.78, 2023.
2J. Rushby, in Safety and Reliability of Software Based Systems, pp. 1–42, Springer, 1997.

While “these tools seem to have the potential to boost the reliability of codes,
they are not widely adopted. […] So, from both a scientific and an epistemo-
logical perspective, it seems even more legitimate today to ask: «If this stuff is
so good, why isn’t it used more?» (Rushby 1997, 18).2 Why does the scientific
community not seize on this type of practice and why does it continue to shun
one of the best tools for increasing confidence in scientific code?”

https://dx.doi.org/10.1017/psa.2022.78

20

While “these tools seem to have the potential to boost the reliability of codes,
they are not widely adopted. […] Why […]?”

From own experience: For example, in MC simulation. Even if you formally
prove that the Metropolis criterion is implemented correctly, that the random
number generator is sufficiently random, etc.

… the whole process of model parameterization, simulation, and analysis of
the results is far too complex. It is inaccessible to formal verification.

Verifying parts could be nice, but it cannot replace “holistic validation.”
In effect, here, formal verification is nice but useless.

“[…] insights by Lenhard2 (2018) about the tendency of the modularity of com-
putational codes to erode […]”

Why don’t more people use formal verification1?

1C. Imbert, V. Ardourel, Philos. Sci. 90(2): 376–394, doi:10.1017/psa.2022.78, 2023.
2J. Lenhard, Philos. Sci. 85(5): 832–844, doi:10.1086/699675, 2018.

https://dx.doi.org/10.1017/psa.2022.78
https://dx.doi.org/10.1086/699675

21

Holistic validation: Johannes Lenhard (2018)

J. Lenhard, “Holism, or the erosion of modularity: A methodological challenge for validation,”
Philos. Sci. 85(5): 832–844, doi:10.1086/699675, 2018.

Consider first a simple brick wall. It consists of a multitude of
modules, each with certain form and static properties. These
are combined into potentially very large structures. […] like the
auxiliary building of Bielefeld University in front of my former
office that is put together from container modules, some of
which work as office space, others as restrooms, etc. […]

These examples illustrate how deeply ingrained modularity is
in our way of building (larger) objects. This applies also to the
design of complex (software) systems.

22

Holistic validation: Johannes Lenhard (2018)

J. Lenhard, “Holism, or the erosion of modularity: A methodological challenge for validation,”
Philos. Sci. 85(5): 832–844, doi:10.1086/699675, 2018.

Validation is usually conceived in the very same modular
structure: independently validated modules are put together in
a controlled way for ensuring the bigger system is also valid.

And I frankly admit that there are well-articulated concepts that
would, in principle, ensure software is clearly written, aptly
modularized, well maintained, and superbly documented.
However, the problem is that science in principle differs from
science in practice.

The resulting problem for validating models is one of (confir-
mation) holism.

23

Holistic validation within the testing framework

Unit tests

Test one piece of code, e.g., one method, for right arguments return value.→

Integration tests

Test concrete interactions between parts of the code, do they fit together?

Acceptance tests

Holistic validation: Run the complete code/system, do y/n correctness checks.

Regression tests

Added once a bug is detected and fixed. Check that the bug does not return.

INF203 13th June 2025

Digitalisering på Ås

Institutt for datavitskap

3 Validation

3.3 Formal program analysis
3.4 Holistic validation
3.5 Auto- and decorrelation
3.6 Time series block averaging

25

https://www.statsmodels.org/stable/tsa.html

https://www.statsmodels.org/stable/examples/index.html#time-series-analysis

Time series in Python

https://www.statsmodels.org/stable/tsa.html
https://www.statsmodels.org/stable/examples/index.html#time-series-analysis

26

Autocorrelation of time series data

Time series data are autocorrelated. This means that data points taken at times

close to each other cannot be regarded as independent items of information.

Assume we are given time series data d(t):

autocorrelation R(Δt) = <d(t) d(t + Δt)>
autocovariance <[d(t) – <d>] [d(t + Δt) – <d>]>

Often normalized by Var(d) to yield ρ(Δt).

Epot for our N = 162 system

Blue: Accumulated average

27

Autocorrelation function (normalized autocovariance)

autocorrelation-statsmodels.ipynb

with tendency/bias

residual (tendency/bias removed)

28

Autocorrelation function (normalized autocovariance)

affected by tendency/bias
(not properly indicative of

diffusive behaviour)

normalized autocorrelation of the
residual (tendency/bias removed)

autocorrelation-statsmodels.ipynb

29

Decorrelation time

A typical approach to uncertainty estimation is based on:

● Some set of data that are representative of the phenomenon;
● Separation of data points into training, validation, and test data.

But: Different data points on a time series are not independent tests, they are

correlated – this is exactly what is expressed by the autocorrelation function.

decorrelation.ipynb

ρ(Δt) ≈ exp(–Δt / τ)

30

Decorrelation time

A typical approach to uncertainty estimation is based on:

● Some set of data that are representative of the phenomenon;
● Separation of data points into training, validation, and test data.

But: Different data points on a time series are not independent tests, they are

correlated – this is exactly what is expressed by the autocorrelation function.

decorrelation.ipynb
ρ(Δt) ≈ exp(–Δt / τ)

decorrelation time τ

τ

INF203 13th June 2025

Digitalisering på Ås

Institutt for datavitskap

3 Validation

3.3 Formal program analysis
3.4 Holistic validation
3.5 Auto- and decorrelation
3.6 Time series block averaging

3213th June 2025INF203

Our approach to uncertainty estimation can now be based on:

● Some set of data that are representative of the phenomenon;
● Separation of data points such that they are decorrelated.

Uncertainty in time series

Once Δt exceeds 3τ, the normalized autocorrelation is small, ρ(Δt) < 0.05. We

can average over blocks with size 3τ (or more) and then treat each of these

block averages as independent data points.

Warning: This only works if the autocorrelation actually is decaying.

It will lead to mistakes where there is a strong correlation over long timespans,

such as when analysing a periodic signal. If your data points are not really

decorrelated, you can never treat them as independent items of information.

33

Our approach to uncertainty estimation can now be based on:

● Some set of data that are representative of the phenomenon;
● Separation of data points such that they are decorrelated.

Uncertainty in time series

Once Δt exceeds 3τ, the normalized autocorrelation is small, ρ(Δt) < 0.05. We

can average over blocks with size 3τ (or more) and then treat each of these

block averages as independent data points. This is called block averaging.

Nb such blocks correspond to Nb–1 independent deviations from the mean.

Variance of the block averages: σb
2 = (Nb – 1)–1 (Σ Bi -)2

Uncertainty based on σ, where σ = Nb
–1/2 σb from central limit theorem.

A rigorous theory of block averaging was developed by Flyvbjerg and

Petersen1 (which is therefore also called Flyvbjerg-Petersen block averaging).

1H. Flyvbjerg, H. G. Petersen, J. Chem. Phys. 91: 461–466, doi:10.1063/1.457480, 1989.

https://dx.doi.org/10.1063/1.457480

34

Uncertainty in time series
block-averaging.ipynb

35

Uncertainty in time series
nok-eur.ipynb

3613th June 2025INF203

Flyvbjerg-Petersen method

The Flyvbjerg-Petersen method works without computing the autocorrelation.
It instead analyses convergence behaviour over the number of blocks Nb:

H. Flyvbjerg, H. G. Petersen, “Error estimates on averages of correlated data,” J. Chem. Phys.

91(1): 461-466, doi:10.1063/1.457480, 1989.

n’ = Nb

https://dx.doi.org/10.1063/1.457480
https://dx.doi.org/10.1063/1.457480

3713th June 2025INF203

Observations on block averaging

– When you indicate an uncertainty (which you always should), it is also
necessary to explain what kind of uncertainty – how it was determined.

– Block averaging is a widespread method for obtaining the uncertainty
of average values from time series, and datasets similar to time series.

– The variance of block averages is σb
2 = (Nb – 1)–1 (Σ Bi -)2, where

error bars are often given as ±2σ, i.e., twice the standard deviation.

– A prerequisite for this to work is that the size of a block is large enough
so that different blocks can be considered statistically independent.

– You can determine the decorrelation time to see how large blocks
should be, or you can analyse the convergence behaviour over Nb.

– In practice, people (who are not data scientists) often ignore the
prerequisite, just use some number of blocks, and still call it “Flyvbjerg-
Petersen method.” This is very bad practice. Don’t be like them.

INF203 13th June 2025

Digitalisering på Ås

Institutt for datavitskap

Discussion topic:
E-R diagrams

3913th June 2025INF203

Questions about E-R diagrams

Confer e.g. the example:

 emne

emnekode

emnetittel

blokk

studiepoeng

 tilsett

tilsett_id

etternamn

førenamn

epost

stillingsnemning

institutt

 emneansvar

studieår tilsett_idemnekode

How can we use E-R diagram notation to express our object-oriented data
structure design as clearly as possible?

4013th June 2025INF203

Questions about E-R diagrams

Let us look at some concrete discussion items, e.g., a submission looking like:

 Box

lx, ly, lz

volume

compartments

molecules[]

total_energy

 Molecule

position

old_position

potential_energy

 id

mass

1 contains n

 Box

 surface_tension

Molecule

Compartments

calculates

places

position

mass

old_position

density

volume

volume

PBC 1
n

m

INF203 13th June 2025

Digitalisering på Ås

Institutt for datavitskap

INF203
June advanced programming project

3 Uncertainty, validation, and testing

3.1 Unit testing 3.4 Holistic validation
3.2 Reproducibility 3.5 Autocorrelated data
3.3 Formal analysis 3.6 Block averaging

