
INF203 17th June 2025

Digitalisering på Ås

Institutt for datavitskap

INF203
June advanced programming project

4 Development for production

4.1 Python packages 4.4 Arguments to the script
4.2 Package publication 4.5 Reference data
4.3 Logging 4.6 Scientific computing

217th June 2025INF203

Plan for part 4: Production

Tuesday, 17th June 2025

– Part 4.1: Python packages
– Part 4.2: Package publication
– Part 4.3: Logging
– Part 4.4: Arguments to the script

Informal discussion / chat in room epsilon with …

– Group 3 (at 13:15)
– Group 5 (at 13:30)
– Group 10 (at 13:45)
– Group 11 (at 14:15)

317th June 2025INF203

Plan for part 3: Validation

Wednesday, 18th June 2025

– Part 4.5: Reference data
– Part 4.6: Scientific computing

Presentations by …

– Group 3
– Group 5
– Group 10
– Group 11

Final submission deadline on Saturday, 21st June 2025, 17.30 CEST.

417th June 2025INF203

Look through the final worksheet

– Input from JSON file and command line
• Implement Orchestrator class in source file ./src/ljts/orchestrator.py.

– Uncertainty analysis
• Implement it in a separate source folder called ./src/timeseries.

– Testing and validating your code base
• Use some unit tests, plus some tests other than unit tests.

– Simulation production runs

– Package your code and compile the project report

5

Checklist for the submission and project report

I. Introduction

Were the responsibilities
divided evenly or unevenly? Did
any group members need to do
more work, e.g., because one of
the three initial members left the
group?

What git were you using? What
other collaborative environ-
ments were you using?

If there are any interesting/un-
usual environments or tools that
you tried out, what was your
experience - can you recom-
mend them?

Give a description of the
personas. State how many epics
and how many user stories you
have on your register.

Provide very basic information to
the user just for getting started.

In the end, did you implement
and test all your "must"
requirements? How far did you
get on requirements that were
assigned a lower priority?

6

Checklist for the submission and project report

II. Implementation

Does your code come in the
form of a Python package? How
would it be possible to distribute
it e.g. on PyPI?

Do all the modules, classes,
methods and other functions
have docstrings? Do the
docstrings of methods/functions
describe all the parameters?

Are you using any abstract
classes, callable objects (e.g.,
factories), function/class objects,
and if so, how is it useful?

What source files and other files
are included in your submission,
in what directories are they, and
what is their basic purpose?

Does the code have enough
comments to make it intelligible
to other developers?

Include an E-R diagram for your
classes, using relations (dia-
monds) to represent object re-
ferences included as attributes
of another object. Represent in-
heritance with arrows between
classes in the same diagram.

Are you encapsulating the member variables
of classes, do their names begin with an un-
derscore? Do you use getter and setter me-
thods, @property and @<attribute>.setter
decorators?

7

Checklist for the submission and project report

III. Functionality and validation

Is the functionality implemen-
ted? How can we see that it is
implemented correctly?

Does the requirements register
state for each functional require-
ment whether it has been tes-
ted/validated?

Are you using any unit tests?

What higher level tests (e.g., in-
tegration and acceptance tests)
did you implement?

For what methods or units of the
code do you have unit tests?

How many of the implemented
functional requirements have
been tested/validated?

8

Checklist for the submission and project report

IV. Sampling and data analysis

What visualization techniques
are you using, and what kind of
data processing or analysis do
they facilitate or require?

Show in detail, for one concrete
example, how you determine
and express the uncertain-
ty/error of a numerical result.

Explain the basic structure of
your simulation runs.

How can we tell that equilibrium
actually has been reached at the
end of the equilibration?

Did you implement block
averaging? What method is used
to determine the number of
blocks?

What console and/or logger
output do you have? How are
you processing or aggregating
data for this purpose?’

9

Checklist for the submission and project report

V. Simulation results

Vapour-liquid reference system

Vapour-only reference system Any other results

Comparison to results
from the literature

INF203 17th June 2025

Digitalisering på Ås

Institutt for datavitskap

4 Production

4.1 Python packages
4.2 Distributing a package
4.3 Logging
4.4 Command-line arguments

11

Why create packages in Python?

– Code reusability: Packages allow you to encapsulate functionality into
modules that can be easily reused across multiple projects, reducing
duplication and enhancing efficiency.

– Organization: Group related functions, classes, and modules together
in a package, making your codebase more structured and easier to
navigate.

– Collaboration: Publishing packages makes it simpler to share your
code with others, enabling collaboration and community contributions.

– Maintenance: By isolating functionality in packages, it becomes easier
to debug, manage and update your code, ensuring it remains robust.

– Distribution: Packages can be published to repositories like PyPI,
making your work accessible to a broader audience.

(Info: Content taken over from the INF202 slides by Jonas.)

12

Packages: Folder layout

Tutorial: https://packaging.python.org/en/latest/tutorials/packaging-projects/

Folder structure

./ ./data ./data/… (folder for output data)

./input ./input/… (JSON and other input files)

./LICENSE

./main.py

./pyproject.toml

./README.md

./requirements.txt

./src ./src/ljts ./src/ljts/… (your code)

./src/timeseries ./src/timeseries/… (your code)

./tests ./tests/… (script files containing tests)

https://packaging.python.org/en/latest/tutorials/packaging-projects/

13

Packages: Folder layout

Tutorial: https://packaging.python.org/en/latest/tutorials/packaging-projects/

Folder structure

./ ./data ./data/… (folder for output data)

./input ./input/… (JSON and other input files)

./LICENSE

./main.py

./pyproject.toml

./README.md

./requirements.txt

./src ./src/ljts ./src/ljts/… (your code)

./src/timeseries ./src/timeseries/… (your code)

./tests ./tests/… (script files containing tests)

with “__init__.py” files
(the files can be empty)

Check as follows if setuptools detects
all the folders containing your code:

import setuptools
print(setuptools.find_packages())

https://packaging.python.org/en/latest/tutorials/packaging-projects/

14

Packages and imports

(Info: Content based on the INF202 slides by Jonas.)

./pyproject.toml

The “__init.py__” files, which may be
empty, indicate the inclusion of the
folder in a package.

When a package is imported, its
source code is executed.

However, names from the source
code starting with an underscore,
such as _foo(), will not be imported.

15

requirements.txt file for pip

See also: https://pip.pypa.io/en/stable/reference/requirements-file-format/

“Each line of the requirements file indicates something to be installed, or
arguments to pip install. The following forms are supported:

 [[--option]...]
 <requirement specifier>
 <archive url/path>
 [-e] <local project path>
 [-e] <vcs project url>”

In practice, it can be just a line-by-line listing of all pip packages that you use.

This means that it can also be an empty file.

Install requirements by:

python3 -m pip install -r
./requirements.txt

https://pip.pypa.io/en/stable/reference/requirements-file-format/

INF203 17th June 2025

Digitalisering på Ås

Institutt for datavitskap

4 Production

4.1 Python packages
4.2 Distributing a package
4.3 Logging
4.4 Command-line arguments

17

How to publish a Python package

Disclaimer: From this project, you (of course) shouldn’t publish your package.

– Packaging your Python code: Use setuptools to package your Python
code into a distributable format.

– Prepare for distribution: Make sure your package has the necessary files
like setup.py, init .py, and any other modules or packages.

– Build and distribute: Create a distribution and publish your package to
PyPI (Python package index).

Step 1: Install dependencies

Install setuptools and twine for packaging and uploading the package:

pip install setuptools twine wheel

(setuptools is used to create the package; twine helps to upload it securely.)

(Info: Content taken over from the INF202 slides by Jonas.)

18

“setup.py”

Step 2: Additional configuration e.g. using a setup.py file

(Info: Content based on the INF202 slides by Jonas.)

Python documentation: “Additional
configuration of the build tool will
either be in a tool section of the
pyproject.toml, or in a special file
defined by the build tool. For
example, when using setuptools as
your build backend, additional
configuration may be added to a
setup.py or setup.cfg file”

from setuptools import setup, find_packages
setup(
 name = 'test_area_monte_carlo_etc_etc',
 version = '0.2',
 packages = find_packages(),
 install_requires = [
 'setuptools',
 'statsmodels' # any dependencies
]
)

./setup.py

19

Building the package

Step 3: Create the distribution package

Run python3 ./setup.py sdist bdist_wheel.

This generates two types of distributions:

– sdist (source distribution): An archive (tar or zip) with the source code.
– bdist_wheel (wheel distribution): Pre-compiled, faster to install.

The wheel contains all the necessary files, including compiled binaries (if
applicable), so users don’t need to compile the code during installation. It is
platform-specific and has the extension .whl.

(Info: Content taken over from the INF202 slides by Jonas.)

20

Distributing the package

Step 4: Upload the Package to PyPI

PyPI (Python package index) is the official repository for third-party Python
packages. It serves as a central hub where developers can upload and share
Python code that can be easily installed by others. You need to create an
account and generate a token to use it. Use TestPyPI if you want to try it out.

Use twine to securely upload the distribution files to PyPI:

python -m twine upload dist/* -r testpypi

This uploads both the sdist and wheel files to your PyPI account.

Once uploaded, users can install your package using pip:

pip install package_name

(Info: Content taken over from the INF202 slides by Jonas.)

if available, the wheel is installed

The flag is not needed If you really
want to upload to the main PyPI

21

Distributing the package

Step 4 (for playing around): Upload the Package to TestPyPI

PyPI (Python package index) is the official repository for third-party Python
packages. It serves as a central hub where developers can upload and share
Python code that can be easily installed by others. You need to create an
account and generate a token to use it. Use TestPyPI if you want to try it out.

Use twine to securely upload the distribution files to PyPI:

python -m twine upload dist/* -r testpypi

This uploads both the sdist and wheel files to your PyPI account.

Once uploaded, users can install your package using pip:

python3 -m pip install --index-url https://test.pypi.org/simple/
--no-deps test_area_monte_carlo_etc_etc

Important: Delete your package once you are done (at least until 22.6.2025).

First, you need to create an account,
establish two-factor authentication, and
then generate a PyPI API token.

https://test.pypi.org/simple/

INF203 17th June 2025

Digitalisering på Ås

Institutt for datavitskap

4 Production

4.1 Python packages
4.2 Distributing a package
4.3 Logging
4.4 Command-line arguments

23

Manual file output vs. using a logger

Manual file writing:

– Requires explicit handling of file opening, writing, and closing.
– The file object needs to be passed around between modules/objects.

Benefits of using a logger:

– Centralized logging: Easily configure logging across different modules.
– Multiple logging levels: Control verbosity with levels like DEBUG, INFO,

WARNING, ERROR, and CRITICAL.
– Flexible output: Log messages to various destinations (console, files,

external services) without changing the logging calls.

(Info: Content taken over from the INF202 slides by Jonas.)

See documentation at: https://docs.python.org/3/library/logging.html

https://docs.python.org/3/library/logging.html

24

Levels: DEBUG, INFO, WARNING, ERROR, CRITICAL

import logging

configure the logger
#
logging.basicConfig(

filename = 'logfile.res', filemode='w',
level = logging.WARNING, # set the threshold to WARNING
format = '%(message)s'

)

logging.debug("This is a debug message.")

(Info: Content based on the INF202 slides by Jonas.)

Or: logging.info(…), logging.warning(…),
logging.error(…), and logging.critical(…)

With this, the mentioned level and
all those above will be logged. Here:
WARNING, ERROR, and CRITICAL.

erases old
logfile

INF203 17th June 2025

Digitalisering på Ås

Institutt for datavitskap

4 Production

4.1 Python packages
4.2 Distributing a package
4.3 Logging
4.4 Command-line arguments

2617th June 2025INF203

Command-line arguments

The arguments from the command line are stored in the list sys.argv.

Examples:

– Call ./main.py str1 str2 sys.argv = ['.main.py', 'str1', 'str2→ ']
– Call python3 ./main.py str1 str2 sys.argv = ['.main.py', 'str1', 'str2→ ']

In case we call ./main.py input-filename.json, the content can be accessed as:

import sys
import json
jsonfile = open(sys.argv[1], 'r')
simulation_control_parameters = json.load(jsonfile)
jsonfile.close()

2717th June 2025INF203

Command-line arguments: argparse

Not needed here, but in complicated cases, argparse can be used.

import argparse

def parse_input():
parser = argparse.ArgumentParser(description = 'A help message')
parser.add_argument('-v', '--value', default = 'default_value', help = 'Put in a value')
parser.add_argument('--flag', action = 'store_true', help = 'Set this if flag should be true')

args = parser.parse_args()

return args.value, args.flag

Now the user can use the '-h' flag to get help input on command-line
arguments.

(Info: Content taken over from the INF202 slides by Jonas.)

2817th June 2025INF203

“main” guard

The module name, i.e., usually the path to the script file, can be accessed
through the variable __name__.

For the script that is being executed directly (not imported), the value of
__name__ is “__main__”, irrespective whether the script is called main or not.

python3 ./main.py In main.py, __name__ is '__main__'.→
python3 ./main.py In molecule.py (imported), __name__ is 'src.ljts.molecule'.→
python3 src/ljts/molecule.py In molecule.py, __name__ is '__main__'.→

Guard to check whether a script is being run directly, as opposed to imported:

if __name__ == '__main__':
main() # here, put whatever you want to be executed only if run directly

INF203 17th June 2025

Digitalisering på Ås

Institutt for datavitskap

INF203
June advanced programming project

4 Development for production

4.1 Python packages 4.4 Arguments to the script
4.2 Package publication 4.5 Reference data
4.3 Logging 4.6 Scientific computing

