
INF205 7th September 2022

INF205
Resource-efficient programming

I C++ basics

I.1 Scope of the module
I.2 C/C++: Getting started
I.3 Discussion: From Python to C and C++
I.4 Good practice and style

27th September 2022INF205

Why resource-efficient programming?

Embedded systems

Digitalization entails pervasive
computing, including at nodes or
components without a great amount
of computational resources.

P. J. Denning, T. G. Lewis, doi:10.1145/2976758, 2017.

Moore’s law

“What comes after
Moore’s law?”

C. E. Leiserson et al.,
doi:10.1126/science.aam9744, 2020.

therein, see Tab. 1

37th September 2022INF205

Module room on Canvas
What features on Canvas
are you using most?

47th September 2022INF205

Course website

https://home.bawue.de/~horsch/teaching/inf205/

https://home.bawue.de/~horsch/teaching/inf205/

57th September 2022INF205

C++ versus Python

C++ Python

“What differences between C++
and Python are the most

important (to you)?”

INF205 7th September 2022

1 C++ basics

1.1 Scope of the module

77th September 2022INF205

Learning outcomes

After completing the course you will be able to

– implement solutions in modern C++;
– manage memory correctly in larger projects;
– make use of capabilities provided by the C++ Standard Library and

third-party libraries;
– implement data types from “first principles;”
– write code suitable for embedded systems;
– create interfaces allowing your code to interact with other software.

We speak of “modern C++” because of the long history of C++, e.g., retaining
all of the C programming language. C++ is like several languages in one.

Focus: Develop solutions that work both reliably and efficiently.

87th September 2022INF205

Structure

1) C++ basics: Intro into “modern C++” as a programming language.

2) Data structures: C++ standard template library (lists, maps, etc.). How to build
data structures in a language that gives you control over memory management.

3) Concurrency: MPI and parallelization in scientific computing; ROS in C++.

4) Debugging and production: Tools, good practice, and optimization.

5) Parallel and distributed data: Concurrency and efficiency in dealing with data.

C++
basics

parallel and
distributed data

data
structures

debugging
and production

concurrency

97th September 2022INF205

Literature

Stroustrup’s C++ books:

Resources on modern C++ programming style:

– C++ Core Guidelines, https://github.com/isocpp/CppCoreGuidelines

– R. Grimm, C++ Core Guidelines Explained, Pearson, 2022

compact, best for people with
programming knowledge

https://github.com/isocpp/CppCoreGuidelines

107th September 2022INF205

Graded programming project

Choice between a robotics-related and a scientific computing problem.

The programming-project group work is evaluated and graded in two parts:

– Handed-in source code and documentation (70%);
– Presentation of the project with discussion (30%).

Projects should be done by groups of three participants jointly; groups of two
are also possible. Grades will be individualized based on a clearly designated
split of responsibilities between group members.

Coding group work is carried out from week 43 to week 48. Presentations
and discussions are held in week 49; depending on the number of
submissions and scheduling, this period may extend into week 50.

INF205 7th September 2022

1 C++ basics

1.1 Scope of this module
1.2 C/C++: Getting started

127th September 2022INF205

The “main” function

#include <iostream>
using namespace std;

bool is_prime(int n)
{
 for(int i = 2; n >= i*i; i++)
 {
 if((n % i) == 0) return false;
 }
 return true;
}

int main()
{
 int x = 900;
 if(is_prime(x)) cout << x << " is prime.\n";
 else cout << x << " is not prime.\n";
}

def is_prime(n):
 for i in range(2, 1 + int(n**0.5)):
 if n%i == 0:
 return False
 return True

x = 900
if is_prime(x):
 print(x, "is prime.")
else:
 print(x, "is not prime.")

What does the program do?

What is the role of “main”?

137th September 2022INF205

C++ as a compiled language

Compile the code from the previous slide (file name: prime-check.cpp), using
the GNU C++ compiler: g++ prime-check.cpp -o prime-check

Alternatively, in a Linux environment, we have GNU make: make prime-check

Normally, codes comprise multiple code files. They are compiled separately
(creating object files), and then linked. Only after linking there is an executable
file. With the GNU C++ compiler, g++ is called both as compiler and linker:

g++ -c only-is-prime.cpp

g++ -c only-main.cpp

g++ -o prime-check *.o

only-is-prime.cpp

only-main.cpp

prime-check

compiler

compiler

only-is-prime.o

only-main.o

linker

147th September 2022INF205

Makefiles and GNU make

GNU make operates on instructions in a file that must be called Makefile.

g++ -c only-is-prime.cpp

g++ -c only-main.cpp

g++ -o prime-check *.o

only-is-prime.cpp

only-main.cpp

prime-check

compiler

compiler

only-is-prime.o

only-main.o

linker

prime-check: only-main.o only-is-prime.o
 g++ -o prime-check *.o

clean:
 rm *.o prime-check

Makefiletarget-1: requirements
instruction

target-2: requirements
instruction

…

use tab for
indenting

call e.g. “make target-2”

157th September 2022INF205

A brief demo

#include <iostream>
using namespace std;

bool is_prime(int n)
{
 for(int i = 2; n >= i*i; i++)
 {
 if((n % i) == 0) return false;
 }
 return true;
}

int main()
{
 int x = 900;
 if(is_prime(x)) cout << x << " is prime.\n";
 else cout << x << " is not prime.\n";
}

Let us split this code into two code
files, one for each of the functions.

How does main then know about
is_prime at compile time? The
declaration

bool is_prime(int n);

can be split from the definition:

bool is_prime(int n) { … }

The code file only_main.cpp only
needs to contain the declaration.
Then is_prime() can be called from
within main().

167th September 2022INF205

A brief demo: Header files

#include <iostream>
using namespace std;

bool is_prime(int n)
{
 for(int i = 2; n >= i*i; i++)
 {
 if((n % i) == 0) return false;
 }
 return true;
}

int main()
{
 int x = 900;
 if(is_prime(x)) cout << x << " is prime.\n";
 else cout << x << " is not prime.\n";
}

Let us split this code into two code
files, one for each of the functions.

How does main then know about
is_prime at compile time? The
declaration

bool is_prime(int n);

can be split from the definition:

bool is_prime(int n) { … }

This sort of declarations are
commonly stored in separate
“interface” or “header” files with the
ending “.h”. In this way, the header
can be included by all external code
that requires the same declarations.

177th September 2022INF205

Discussion: Resource efficiency

Usually we are not interested in the resource requirements of a single execution,
but in understanding how the requirements behave as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

– Time requirements, describing the computing time. Where possible, this
should be expressed in terms of actual CPU time (+ I/O time); the opera-
ting system will usually distribute CPU time between multiple processes.

– Memory (or space) requirements, describing the memory allocated to
the program; depending on definition, this may include I/O size.

– Worst-case performance, which for any given problem size n corres-
ponds to the input/special case of size n with the greatest requirements.

– Average-case performance, over many representative cases of size n.

Metrics closer to the hardware (e.g., energy consumption) can also be relevant.

187th September 2022INF205

Discussion: Resource efficiency

Observations:

• Performance analysis is carried out by measurements; it is usually very
hard to determine the worst case, therefore it is common to describe the
average-case performance, e.g., from random input.

• Algorithm efficiency can consider both the average and the worst case,
but the average case usually requires a statistical analysis. Statements on
the worst case can be very straightforward.

• There is no universal rule for how the problem size n should be defined.
It is up to the person analysing an algorithm to define it appropriately. It
should describe how complicated the task is.

• Distinguish between the efficiency of a program (or algorithm) and the
complexity of the problem. The complexity of the problem is given by
the efficiency of the best possible program (or algorithm).

197th September 2022INF205

Discussion: Resource efficiency

#include <iostream>
using namespace std;

bool is_prime(int n)
{
 for(int i = 2; n >= i*i; i++)
 {
 if((n % i) == 0) return false;
 }
 return true;
}

int main()
{
 int x = 900;
 if(is_prime(x)) cout << x << " is prime.\n";
 else cout << x << " is not prime.\n";
}

def is_prime(n):
 for i in range(2, 1 + int(n**0.5)):
 if n%i == 0:
 return False
 return True

x = 900
if is_prime(x):
 print(x, "is prime.")
else:
 print(x, "is not prime.")

How would you describe the time
efficiency (or time requirements, or
performance) of the function
is_prime(n), as a function of n?

Compare: What would you say about
the complexity of the problem?

INF205 7th September 2022

1 C++ basics

1.1 Scope of this module
1.2 C/C++: Getting started
1.3 From Python to C/C++

217th September 2022INF205

Analogies and differences

#include <iostream>
using namespace std;

bool is_prime(int n)
{
 for(int i = 2; n >= i*i; i++)
 {
 if((n % i) == 0) return false;
 }
 return true;
}

int main()
{
 int x = 900;
 if(is_prime(x)) cout << x << " is prime.\n";
 else cout << x << " is not prime.\n";
}

def is_prime(n):
 for i in range(2, 1 + int(n**0.5)):
 if n%i == 0:
 return False
 return True

x = 900
if is_prime(x):
 print(x, "is prime.")
else:
 print(x, "is not prime.")

Let us gather as much as we can
from our simple example: What
do C++ and Python syntax have
in common? What is different?

INF205 7th September 2022

1 C++ basics

1.1 Scope of this module
1.2 C/C++: Getting started
1.3 From Python to C/C++
1.4 Good practice and style

237th September 2022INF205

C++ Core Guidelines

• In: Introduction
• P: Philosophy
• I: Interfaces
• F: Functions
• C: Classes and class

hierarchies
• Enum: Enumerations
• R: Resource management
• ES: Expressions and

statements

• Per: Performance
• CP: Concurrency and

parallelism
• E: Error handling
• Con: Constants and immutability
• T: Templates and generic

programming
• CPL: C-style programming
• SF: Source files
• SL: The Standard Library

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

247th September 2022INF205

Function syntax

// declaration:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, …);

// definition:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, …)
{
 …
 return return_value; // must be of type ret_type
}

Multiple versions of a function (named equally) with different argument types:

// takes an integer argument
//
void print(int n) { … }

// takes a string argument
//
void print(string str) { … }

Function overloading:

257th September 2022INF205

Function syntax

// declaration:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, …);

// definition:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, …)
{
 …
 return return_value; // must be of type ret_type
}

Core Guidelines on functions:
– F.1: “Package” meaningful operations as carefully named functions
– F.2: A function should perform a single logical operation
– F.3: Keep functions short and simple

…
– F.46: int is the return type for main()

267th September 2022INF205

Eclipse IDE

https://www.eclipse.org/downloads/packages/release/2022-09/rc1/eclipse-ide-cc-developers/

https://www.eclipse.org/downloads/packages/release/2022-09/rc1/eclipse-ide-cc-developers/

277th September 2022INF205

Our practices in INF205

Tutorial/øving sections

– #1, Thursdays, 10.00 – 12.00, in TF1-105
– #2, Thursdays, 12.00 – 14.00, in TF1-105

We have 85 students in INF205, the size of room TF1-105 is limited …

– It is necessary for all to split up fairly evenly into the two sections.

Registration

Use self-signup
functionality
under “Groups”
on Canvas.

Limit: 44 each.

287th September 2022INF205

Our practices in INF205

Recordings

Do we want to have the lecture recorded?
What is your experience with recorded lectures at NMBU?

OS and installations

Who is already normally working by default under Linux? (Or other Unix.)
Who cannot at least work with a dual boot system or using Linux on a VM?
We will figure out the best solutions on a case-by-case basis in the tutorial.

Group formation and robotics vs. HPC

Who has a robotics background and has worked with ROS? Who has not?
Who prefers a project task from robotics, who prefers scientific computing?
Best already start working together in groups that are aligned on this question.

INF205 7th September 2022

Conclusion

INF205 7th September 2022

INF205
Resource-efficient programming

I C++ basics

I.1 Scope of the module
I.2 C/C++: Getting started
I.3 Discussion: From Python to C and C++
I.4 Good practice and style

	Lysbilde 1
	Lysbilde 2
	Lysbilde 3
	Lysbilde 4
	Lysbilde 5
	Lysbilde 6
	Lysbilde 7
	Lysbilde 8
	Lysbilde 9
	Lysbilde 10
	Lysbilde 11
	Lysbilde 12
	Lysbilde 13
	Lysbilde 14
	Lysbilde 15
	Lysbilde 16
	Lysbilde 17
	Lysbilde 18
	Lysbilde 19
	Lysbilde 20
	Lysbilde 21
	Lysbilde 22
	Lysbilde 23
	Lysbilde 24
	Lysbilde 25
	Lysbilde 26
	Lysbilde 27
	Lysbilde 28
	Lysbilde 29
	Lysbilde 30

