Norges miljg- og

et
T o
INF205

Resource-efficient programming

I C++ basics

.1 Scope of the module

.2 C/C++: Getting started

1.3 Discussion: From Python to C and C++
.4 Good practice and style

INF205 7" September 2022

F

LOG, OF THE NUMBER O

Why resource-efficient programming?

u
[4
N

Norwegian University
of Life Sciences

"What comes after

Figure 1. Moore’s original prediction graph Figure 2. Speeds of the fastest computers from 1940 show an exponential rise in speed. M I I ?II
showed component count followed a From 1965 to 2015, the growth was a factor of 12 orders of 10 over 50 years, or a doubling o o re S a W H
straight line when plotted on log paper.”® approximately every 1.3 years.
. M s | The Top
2 4— FLOPS *—e OPS
B i Ll oore s law
Z 15 s
@ 14 i 10% 01010011 01100011
g 13f F i o 01101001 01100101 m
= Vi = | 01101110 01100011
g W Fioet 01100101 00000000 AT
=L o [
= 7 s € oo} - :
g e 3 Software Algorithms Hardware architecture
» 3 a 104+
n 2
- 3 s 10 Software performance New algorithms Hardware streamlining
Al a engineering
= o mo—mm$mwr~mmc—mmem 103+
S BEBRERLEL2ECEEEEE . . kit
S docons e il Removing software bloat New problem domains Processor simplification
Fig. 2 Number of camponents por bitogeated oy — Tailoring software to New machine models Domain specialization
o e e 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 hardware features
Year

P.J. Denning, T. G. Lewis, doi:10.1145/2976758, 2017.

Embedded systems

Digitalization entails pervasive
computing, including at nodes or
components without a great amount

of computational resources.

INF205

ottom

for example, semiconductor technology

Performance gains after Moore’s law ends. In the post-Moore era, improvements in computing power will
increasingly come from technologies at the “Top™ of the computing stack, not from those at the “Bottom’,
reversing the historical trend.

C. E. Leiserson et al.,
doi:10.1126/science.aam?744, 2020.

therein, see Tab. 1

7" September 2022 2

Module room on Canvas

]

Account

Dashboard

Courses

INF205

2022 HEST

Home
| Syllabus
People
Office 365
Grades
Discussions
Zoom
Collaborations
BigBlueButton

Panopto Video

r - I Norwegian University
- of Life Sciences

What features on Canvas

Course syllabus are you using most?

NMBU, INF205, H2022: Resource-efficient programming

¢ Lecture: Wednesday, 14.00 - 16.00, TF1-102.
» Datalab: Thursday, 10.00 - 12.00, TF1-105 (group #1}); Thursday, 12.00 - 14.00, TF1-105 (group #2).

Team: Martin Horsch = (office: TF2-303A), Jorge Hermoso.
Module resources:

o INF205 course website

* NMBU course catalogue entry in English e» and in Norsk Bokmal =

Literature:

Stroustrup's "Tour of C++" is a compact book presenting modern C++ to readers with a solid background in
programming. It is the main literature source for the module.

» B. Stroustrup, A Tour of C++, 2nd edn., Addison-Wesley (ISBN 978-0-134-99783-4), 2018.

Course summary.

Date Details Due
Wed, 7 Sep 2022 Ress_urseffektw programmering - 14:00 to 16:00
Forelesning
. Ressurseffektiv programmering - 10:00 to 12:00
@ving
Thu, 8 Sep 2022
Ressurseffektiv programmering - 12:00 to 14:00

@ving

7" September 2022 3

r - I Norwegian University
- of Life Sciences

Course website

NMBU, INF205: Resource-efficient programming (autumn 2022)

+ Lecture: Wednesday, 14.00 - 16.00, TF1-102.
+ Datalab: Thursday, 10.00 - 12.00, TF1-105 (group #1); Thursday, 12.00 - 14.00, TF1-105 (group #2).

Team: Martin Horsch (office: TF2-303A), Jorge Hermoso.

University resources:

« INF205 page on Canvas/Instructure 5 - : 3
. RMEY Coe=s: chbiliniiie Sty i Bl Bn i N https://home.bawue.de/~horsch/teaching/inf205/

Literature:

Stroustrup's "Tour of C++" is a compact book presenting modern C++ to readers with a solid background in programming. It is the
main literature source for the module.

« B. Stroustrup, A Tour of C++, 2nd edn., Addison-Wesley (ISBN 978-0-134-99783-4), 2018.
Supporting literature/other books that could be of interest:

» R. Grimm, C++ Core Guidelines Explained: Best Practices for Modemn C++, Addison-Wesley (ISBN 978-0-136-87567-3),
2022.

» P. Sanders et al., Sequential and Parallel Algorithms and Data Structures, Springer (ISBN 978-3-030-25209-0), 2019.

+ B. Stroustrup, Programming: Principles and Practice Using C++, 2nd edn., Addison-Wesley (ISBN 978-0-321-99278-9),
2014.

Structure:

1. C++ basics
o Calendar week 36
= Literature: Stroustrup (2018) Sections 1.2, 1.3, and 1.8
= Software: Eclipse IDE C/C++ version (install this or the previous version, but not the
eclipse rpm package, which is for Java only)
o Calendar week 37
= Literature: Stroustrup (2018) Sections 1.4to 1.6, 2.2, and 3.2to 3.4

INF205 7" September 2022 4

https://home.bawue.de/~horsch/teaching/inf205/

C++ versus Python

C++ Python

“What differences between C++
and Python are the most
important (to you)?”

INF205 7" September 2022

Noregs milj@- og

U
M BI I biovitskaplege

N universitet

1 C++ basics

1.1 Scope of the module

INF205 7" September 2022

r' I Norwegian University
- of Life Sciences

Learning outcomes

After completing the course you will be able to

— implement solutions in modern C++;

— manage memory correctly in larger projects;

— make use of capabilities provided by the C++ Standard Library and
third-party libraries;

— implement data types from “first principles;”

— write code suitable for embedded systems;

— create interfaces allowing your code to interact with other software.

We speak of “modern C++" because of the long history of C++, e.g., retaining
all of the C programming language. C++ is like several languages in one.

Focus: Develop solutions that work both reliably and efficiently.

INF205 7" September 2022 7

r' I Norwegian University
- of Life Sciences

Structure

1) C++ basics: Intro into “modern C++" as a programming language.

2) Data structures: C++ standard template library (lists, maps, etc.). How to build
data structures in a language that gives you control over memory management.

3) Concurrency: MPI and parallelization in scientific computing; ROS in C++.
4) Debugging and production: Tools, good practice, and optimization.

5) Parallel and distributed data: Concurrency and efficiency in dealing with data.

C++ parallel and

basics . debugging distributed data

structures and production
concurrency

INF205 7" September 2022 8

r - I Norwegian University
- of Life Sciences

Literature

Stroustrup’s C++ books:

BJARNE STROUSTRUP

IHE CREATOR OF Ct#

A Tour of C++

Second Edition

p
=
(@)
c
()
s)
)
+
+
E¢
e
N
A&y

Bjarne Stroustrup

PROGRAMMING

o~)
f“@cmw EDITION Principles and Practice Using C++

BJARNE STROUSTRUP SECOND EDITION

THE CREATOR OF C++

compact, best for people with
programming knowledge

Resources on modern C++ programming style: e CORE GUIDELINES

— C++ Core Guidelines, https://github.com/isocpp/CppCoreGuidelines
— R. Grimm, C++ Core Guidelines Explained, Pearson, 2022

INF205 7" September 2022 9

https://github.com/isocpp/CppCoreGuidelines

r' I Norwegian University
- of Life Sciences

Graded programming project

Choice between a robotics-related and a scientific computing problem.
The programming-project group work is evaluated and graded in two parts:

— Handed-in source code and documentation (70%);
— Presentation of the project with discussion (30%).

Projects should be done by groups of three participants jointly; groups of two
are also possible. Grades will be individualized based on a clearly designated
split of responsibilities between group members.

Coding group work is carried out from week 43 to week 48. Presentations
and discussions are held in week 49; depending on the number of

submissions and scheduling, this period may extend into week 50.

INF205 7" September 2022 10

Noregs milj@- og

U
M BI I biovitskaplege

N universitet

1 C++ basics

1.1 Scope of this module
1.2 C/C++: Getting started

INF205 7" September 2022

r' I Norwegian University
- of Life Sciences

[] [] N —
The “main” function
#include <iostream> defis_prime(n):
using namespace std; fori in range(2, 1+ int(n**O.S)):
if n%i == 0:
bool is_prime(int n) return False
{ return True
for(inti=2; n>=i*; i++)
{ x =900
if((n % i) == 0) return false; if is_prime(x):
} print(x, "is prime.")
return true; else:
) print(x, "is not prime.")
int main()
{ What does the program do?
int x = 900:;
if(is_prime(x)) cout <'< X << | is prime.\n"; Wher fe dhe wale of Trefn™
else cout << x << "is not prime.\n";
}

INF205 7" September 2022 12

r' I Norwegian University
- of Life Sciences

C++ as a compiled language

Compile the code from the previous slide (file name: prime-check.cpp), using
the GNU C++ compiler: g++ prime-check.cpp -o prime-check

Alternatively, in a Linux environment, we have GNU make: make prime-check

Normally, codes comprise multiple code files. They are compiled separately
(creating object files), and then linked. Only after linking there is an executable
file. With the GNU C++ compiler, g++ is called both as compiler and linker:

only-is-prime.cpp

linker

compiler | g++ -c only-is-prime.cpp [only-is-prime.o —» g++ -0 prime-check *.o

}

compiler | g++ -c only-main.cpp —— only-main.o prime-check

!

only-main.cpp

INF205 7" September 2022 13

r' I Norwegian University
- of Life Sciences

Makefiles and GNU make

GNU make operates on instructions in a file that must be called Makefile.

target-1: requirements Makefile

instruction

prime-check: only-main.o only-is-prime.o

use tab for —_
g++ -o prime-check *.o

. indenting
target-2: requirements

Instruction clean:
rm *.o0 prime-check

call e.g. “make target-2"

only-is-prime.cpp
linker

compiler | g++ -c only-is-prime.cpp | only-is-prime.o —» g++ -0 prime-check *.o

}

compiler | g++ -c only-main.cpp —— only-main.o prime-check

!

only-main.cpp

INF205 7" September 2022 14

A brief demo

#include <iostream>
using namespace std;

bool is_prime(int n)

{
for(inti=2; n>=i*; i++)
{
if((n % i) == 0) return false;
}
return true;
}
int main()
{
int x = 900:;

else cout << x << "is not prime.\n";

}

if(is_prime(x)) cout << x << " is prime.\n";

r' I Norwegian University
- of Life Sciences

Let us split this code into two code
files, one for each of the functions.

How does main then know about
is_prime at compile time? The
declaration

bool is_prime(int n);
can be split from the definition:
bool is_prime(intn){ ... }

The code file only_main.cpp only
needs to contain the declaration.
Then is_prime() can be called from
within main().

INF205 7" September 2022 15

A brief demo: Header files

#include <iostream>
using namespace std;

bool is_prime(int n)

{
for(inti=2; n>=i*; i++)
{
if((n % i) == 0) return false;
}
return true;
}
int main()
{
int x = 900:;

if(is_prime(x)) cout << x << " is prime.\n";
else cout << x << "is not prime.\n";

}

INF205

r' I Norwegian University
- of Life Sciences

Let us split this code into two code
files, one for each of the functions.

How does main then know about
is_prime at compile time? The
declaration

bool is_prime(int n);
can be split from the definition:
bool is_prime(intn){ ... }

This sort of declarations are
commonly stored in separate
“interface” or “header” files with the
ending “.h". In this way, the header
can be included by all external code
that requires the same declarations.

7" September 2022 16

r' I Norwegian University
- of Life Sciences

Discussion: Resource efficiency

Usually we are not interested in the resource requirements of a single execution,
but in understanding how the requirements behave as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

— Time requirements, describing the computing time. Where possible, this
should be expressed in terms of actual CPU time (+ I/O time); the opera-
ting system will usually distribute CPU time between multiple processes.

— Memory (or space) requirements, describing the memory allocated to
the program; depending on definition, this may include 1/O size.

— Worst-case performance, which for any given problem size n corres-
ponds to the input/special case of size n with the greatest requirements.

— Average-case performance, over many representative cases of size n.

Metrics closer to the hardware (e.g., energy consumption) can also be relevant.

INF205 7" September 2022 17

Discussion: Resource efficiency

r' I Norwegian University
- of Life Sciences

Observations:

INF205

Performance analysis is carried out by measurements; it is usually very
hard to determine the worst case, therefore it is common to describe the
average-case performance, e.g., from random input.

Algorithm efficiency can consider both the average and the worst case,
but the average case usually requires a statistical analysis. Statements on
the worst case can be very straightforward.

There is no universal rule for how the problem size n should be defined.
It is up to the person analysing an algorithm to define it appropriately. It
should describe how complicated the task is.

Distinguish between the efficiency of a program (or algorithm) and the
complexity of the problem. The complexity of the problem is given by
the efficiency of the best possible program (or algorithm).

7" September 2022 18

Discussion: Resource efficiency

r' I Norwegian University
- of Life Sciences

#include <iostream>
using namespace std;

bool is_prime(int n)

{
for(inti=2; n>=i*; i++)
{
if((n % i) == 0) return false;
}
return true;
}
int main()
{
int x = 900;

if(is_prime(x)) cout << x << " is prime.\n";
else cout << x << "is not prime.\n";

}

defis_prime(n):
foriinrange(2, 1 + int(n**0.5)):
it n%i == 0:
return False
return True

x =900
if is_prime(x):

print(x, "is prime.")
else:

print(x, "is not prime.")

INF205

How would you describe the time
efficiency (or time requirements, or
performance) of the function
is_prime(n), as a function of n?

Compare: What would you say about
the complexity of the problem?

7" September 2022 19

Noregs milj@- og

U
M BI I biovitskaplege

N universitet

1 C++ basics

1.1 Scope of this module
1.2 C/C++: Getting started
1.3 From Python to C/C++

INF205 7" September 2022

r' I Norwegian University
- of Life Sciences

[) [) N —_—
Analogies and differences
#include <iostream> defis_prime(n):
using namespace std; foriin range(2, 1+ int(n**0.5)):
it n%i == 0:

bool is_prime(int n) return False

{ return True
for(inti=2; n>=i*; i++)

{ x =900

if((n % i) == 0) return false; if is_prime(x):
} print(x, "is prime.")
return true; else:

) print(x, "is not prime.")

int main()

{ Let us gather as much as we can
int x = 900: from our simple example: What
if(is_prime(x)) cout << x << " is prime.\n"; do C++ and Python syntax have
else cout <<x <<"is not prime.\n"; in common? What is different?

}

INF205 7" September 2022 21

Noregs milj@- og

U
M BI I biovitskaplege

N universitet

1 C++ basics

1.1 Scope of this module
1.2 C/C++: Getting started
1.3 From Python to C/C++
1.4 Good practice and style

INF205 7" September 2022

C++ Core Guidelines

r' I Norwegian University
- of Life Sciences

In: Introduction
P: Philosophy
|: Interfaces

F: Functions

Per: Performance
CP: Concurrency and
parallelism

E: Error handling

* C: Classes and class * Con: Constants and immutability
hierarchies T: Templates and generic

* Enum: Enumerations programming

* R: Resource management * CPL: C-style programming

* ES: Expressions and * SF: Source files

statements * SL: The Standard Library

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

INF205 7" September 2022 23

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

r' I Norwegian University
- of Life Sciences

Function syntax

// declaration:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, ...);

// definition:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, ...)

{

return return_value; // must be of type ret_type

}

Function overloading:

Multiple versions of a function (named equally) with different argument types:

// takes an integer argument // takes a string argument
// //
void print(intn){ ... } void print(string str) { ... }

INF205 7" September 2022 24

r' I Norwegian University
- of Life Sciences

Function syntax

// declaration:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, ...);

// definition:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, ...)

{

return return_value; // must be of type ret_type

}

Core Guidelines on functions:
— F.1: "Package” meaningful operations as carefully named functions
— F.2: A function should perform a single logical operation
— F.3: Keep functions short and simple

— F.46: intis the return type for main()
INF205 7" September 2022 25

r - I Norwegian University
- of Life Sciences

Ecli IDE §
v eclipse-workspace - prime-check/only-main.cpp - Eclipse IDE - oo
File Edit Source Refactor Navigate Search Project Run Window Help
E@E’loaun VHEprime-check Vlrﬁ'h‘i‘]mﬁ B @ vE i Biw gty [v@~
He@dr -0~ ~QA~r dF~ Hvilvodordy o Q 8 e [s
{5 Project Explorer X = B [9 only-main.cpp X |[g) only-is-prime.cpp [® only-is-prime.h [& Makefile = B SFoutli X @Build = B
T 1 #include <iostream> B 2 S e
27 @ 2 #include "only-is-prime.h" R * 3
- Eprime—check (in prime-check-eclipse) 3 us:i.ng namespace std; o iostream
» ¥ Binaries a . 21 only-is-prime.h
b & build g@t"t S = std
~ [¢ only-is-prime.cpp 7 unsigned x = 908; e main():int
U only-is-prime.h 8 if(is_prime(x)) cout << x << " is prime.\n";
e is_prime{unsigned): bool 13) else cout << x << " is not prime.\n";
» [h only-is-prime.h 1 |
' iostream
 only-is-prime.h
= std
® main():int
[& Makefile

[#) Problems & Tasks & Console X [0 Properties i Call Graph X % & S 8~~~ = 0O
<terminated> (exit value: 0) prime-check [C/C++ Application] farc/tr/lehre/2022/inf205/1-cpp-basics/examples/prime-check-eclipse/build/default/prir
900 is not prime.

Writable Smart Insert 11:1:194 : ™ A O 7 O

https://www.eclipse.org/downloads/packages/release/2022-09/rc1/eclipse-ide-cc-developers/

INF205 7" September 2022 26

https://www.eclipse.org/downloads/packages/release/2022-09/rc1/eclipse-ide-cc-developers/

Our practices in INF205

Tutorial/@ving sections

— #1, Thursdays, 10.00 - 12.00, in TF1-105
— #2, Thursdays, 12.00 - 14.00, in TF1-105

['m-

u
o

N

Norwegian University
of Life Sciences

We have 85 students in INF205, the size of room TF1-105 is limited ...

— ltis necessary for all to split up fairly evenly into the two sections.

RegiStratiOn — INF205-1 22H > People > Groups

U Se Se |f_s i g n u p 'jozz e Everyone Groups

fu n Cti O n a | ity Syllabus Search groups or people

17 17 Heople

u n d e r G ro u p S Office 365 Tutorial section #1: Thursday 10.00 c.t. Tutorial section sign-up 0 students fa)
Grades

On Ca nvas. Discussions
Zoom Tutorial section #2: Thursday 12.00 c.t. Tutorial section sign-up 0 students 2

Limit: 44 eaCh- Collaborations

INF205 7" September 2022 27

r' I Norwegian University
- of Life Sciences

Our practices in INF205

Recordings

Do we want to have the lecture recorded?
What is your experience with recorded lectures at NMBU?

OS and installations

Who is already normally working by default under Linux? (Or other Unix.)
Who cannot at least work with a dual boot system or using Linux on a VM?
We will figure out the best solutions on a case-by-case basis in the tutorial.

Group formation and robotics vs. HPC

Who has a robotics background and has worked with ROS? Who has not?
Who prefers a project task from robotics, who prefers scientific computing?
Best already start working together in groups that are aligned on this question.

INF205 7" September 2022 28

B Noregs milj@- og
biovitskaplege
M universitet

Conclusion

INF205 7" September 2022

Norges miljg- og

et
T o
INF205

Resource-efficient programming

I C++ basics

.1 Scope of the module

.2 C/C++: Getting started

1.3 Discussion: From Python to C and C++
.4 Good practice and style

INF205 7" September 2022

	Lysbilde 1
	Lysbilde 2
	Lysbilde 3
	Lysbilde 4
	Lysbilde 5
	Lysbilde 6
	Lysbilde 7
	Lysbilde 8
	Lysbilde 9
	Lysbilde 10
	Lysbilde 11
	Lysbilde 12
	Lysbilde 13
	Lysbilde 14
	Lysbilde 15
	Lysbilde 16
	Lysbilde 17
	Lysbilde 18
	Lysbilde 19
	Lysbilde 20
	Lysbilde 21
	Lysbilde 22
	Lysbilde 23
	Lysbilde 24
	Lysbilde 25
	Lysbilde 26
	Lysbilde 27
	Lysbilde 28
	Lysbilde 29
	Lysbilde 30

