
INF205 14th September 2022

INF205
Resource-efficient programming

I C++ basics

I.5 Fundamental data types
I.6 Scopes and namespaces
I.7 Data at the memory level
I.8 Toward object orientation in C/C++

214th September 2022INF205

Lecture recordings

“I have now set up automatic recording and live streaming of INF205 in TF1-102 every Wednesday
[…] the recording will start at 14:15. It will also be stopped in the break 15:00-15:15 so that everyone
can move around in the room without being recorded. The streamings and recordings will
automatically be available for the students in the Canvas room under the Panopto Video-button. […]
the lecturer needs to remember […] to use the microphone so that the audio is captured. […]

If there are other people than yourself appearing in the recording, you must convey the information
in the list below to them. […]

– That NMBU will be recording.
– The purpose of the recording ([…] teaching/lectures […] in question).
– Where the recording is stored and shared (Panopto Video via Canvas).
– For how long the recording is stored. [until the next iteration of INF205]
– Where the recording is published (Panopto Video via Canvas).
– Who has access to the recording (students and teachers in the course).
– Where the audience can sit to avoid being recorded ([…] areas […] not captured by camera).
– How to ask questions and get replies without being recorded (e.g. ask their questions in a

break or send them in through alternative channels as e-mail or Canvas).
– The basis of treatment for the recording ([…] consent […] may be withdrawn at any time)”

Information from Studieavdelingen – Learningcenter

314th September 2022INF205

Glossary terms

compile(r)
translate(s) human-readable source code
into a lower-level representation by which
it becomes more machine-actionableprocedural

programming
Programming paradigm based on procedures (in
C/C++, functions) as its highest-level device for
structuring code and the program control flow.

function
Block of code with parameters,
(and parameter types) and
possibly a return type.

void
C/C++ data type name keyword
designating “no data type”

414th September 2022INF205

Programming paradigms

Imperative programming
– It is stated, instruction by instruction, what

the processor should do
– Control flow implemented by jumps (goto)

Structured programming
– Same, but with higher-level control flow
– Contains “instruction by instruction” code

Procedural programming
– Functions (procedures) as highest-level

structural unit of code
– Still contains loops, etc., for control flow

within a function

Object-oriented programming
– Classes as highest-level structural unit of

code; objects instantiate classes
– Still contains functions, e.g., as methods

Functional programming
(also: “declarative programming”)

Logic programming

Constraint programming

Programming paradigms based
on describing the solution

rather than computational steps:

514th September 2022INF205

Functions / procedural programming

• Functions are named

• Each function has a distinct task

• It may have its own variables

• It may call another function, including calls to itself (recursion),

• It may return a value; it must have a return type (which may be void)

• It may accept arguments

• Function parameters are the variables listed in the function’s definition.
Function arguments are the values passed to the function, which are
assigned to the function’s parameters at runtime.

In many procedural programming languages, including C/C++ and Python,
code blocks that can be called from other blocks are called functions. However,
do not confuse procedural programming (as a programming paradigm) with
functional programming, a name given to a very different approach (LISP, etc.).

INF205 14th September 2022

1 C++ basics

1.5 Fundamental data types

714th September 2022INF205

Tutorial example
#include <iostream>
using namespace std;

/* output Fibonacci numbers smaller or equal to x
 * return true if x is a Fibonacci number, false if it is not */
bool print_fibo_until(int x)
{
 int n = 1;
 int fibo_n = 1;
 int fibo_previous = 0;

 while(x >= fibo_n) // could also become a for loop
 {
 cout << n << "\t" << fibo_n << "\n";

 int fibo_next = fibo_n + fibo_previous;

 n += 1;
 fibo_previous = fibo_n;
 fibo_n = fibo_next;
 }
 return x == fibo_previous;
}

int main()
{
 int y = 17711;
 if(print_fibo_until(y)) cout << y << " is a Fibonacci number.\n";
 else cout << y << " is not a Fibonacci number.\n";
}

output Fibonacci numbers smaller/equal to x
return True if x is a Fibonacci number,
False if it is not
#
def print_fibo_until(x):
 n = 1
 fibo_n = 1
 fibo_previous = 0

 while x >= fibo_n:

 print(n, fibo_n, sep="\t", end="\n")

 fibo_next = fibo_n + fibo_previous

 n += 1
 fibo_previous = fibo_n
 fibo_n = fibo_next

 return x == fibo_previous

y = 17711
if print_fibo_until(y):
 print(y, "is a Fibonacci number")
else:
 print(y, "is not a Fibonacci number")

814th September 2022INF205

Fundamental data types in C/C++

int
– the default signed integer type

short (int), long (int), long long (int)
– less/more memory and smaller/larger range of values

unsigned, unsigned short (int), unsigned long (int), …
– holds natural number (or zero); modulo-arithmetic applies: –n = 2k – n

bool
– integer-like; meant to hold the value false (0) or true (1, or any value ≠ 0)

char, wchar_t
– integer-like; meant to hold a ASCII (char) or Unicode (wchar_t) character

declaration only (be careful)

int n;

float and double (also, long double)
– Single-precision and double-

precision floating point numbers

declaration with initialization (recommended)

int n = 0;

914th September 2022INF205

Style advice: Prefer int over unsigned

Core Guidelines style rules against “unsigned”.
These rules use elements taken from the Guidelines Support Library (GSL).

ES.102: Use signed types for arithmetic

ES.106: Don't try to avoid negative values
by using unsigned

I.6: Prefer Expects() for expressing preconditions
I.7: State postconditions [with Ensures()]

ES.107: Don't use unsigned for subscripts [e.g., array indices], prefer gsl::index

int area(int height, int width)
{
 Expects(height > 0);
 int retv = height*width;
 Ensures(retv > 0);
 return retv;
}More traditional style uses assert(…).

The reasoning against a normal (signed)
integer is that “int might not be big enough.”

Except in the very rare occurrence where
that could be the case, we can use int.

example based on Grimm’s book, p.443:

1014th September 2022INF205

auto and const(expr) keywords

const: Used to declare an immutable variable
constexpr: Immutable and, additionally, can be evaluated at compile time

Con.1: By default, make objects immutable
“make objects non-const only when there is a need to change their value”

Con.4: Use const to define objects with values that do not change
Con.5: Use constexpr for values that can be computed at compile time

auto: Leave it to the compiler to determine the type

This requires an initialization. for (auto i = 0; i < 26; i++)
{
 auto c = 'a';
 c += i;
 cout << c;
}

Remark:

typeid(x).name() can
be used to output the
type assigned to x.

should
become int

should
become char

constexpr int space_dimension = 3; int n = 0; cin >> n; const int num_coords = n*space_dimension;

INF205 14th September 2022

1 C++ basics

1.5 Fundamental data types
1.6 Scopes and namespaces

1214th September 2022INF205

Functions and their stack frames

Stack-like memory management

When a function is called, a known amount
of memory must be allocated for its variables
(including parameters) “on top of the stack.”

When the function returns, its memory can
be released; the calling method and its
variables become the top of the stack again.

The lifetime of local variables in a stack
frame is limited to the function’s runtime.

int select(int a, int b)
{
 if(a%2 == 0) return a;
 else return b;
}

int user_input()
{
 int y = 0, z = 0;
 std::cin >> y >> z;
 return select(y, z);
}

int main()
{
 int x = user_input();
}main int x retv (int)

>> select retv (int)int a
int b...

retv (int)user_input int y int z

1314th September 2022INF205

Namespaces and overloading

Function overloading (identical name within the same namespace, if any) and
the use of multiple namespaces are technically different mechanisms.
However, they become similar if equal names occur in multiple namespaces.

namespace task_a
{
 void run(double x, double y);
}
namespace
{
 void run(int x, int y);
}

namespace task_b
{
 void run(int x, int y);
 void run(double x, double y);
}

namespace task_c
{
 void run(double x, double y);
}
namespace
{
 void run(double x, double y);
}

In what case are we strictly overloading “run” (within a single namespace)?

1414th September 2022INF205

Namespaces and overloading

Function overloading (identical name within the same namespace, if any) and
the use of multiple namespaces are technically different mechanisms.
However, they become similar if equal names occur in multiple namespaces.

namespace task_a
{
 void run(double x, double y);
}
namespace
{
 void run(int x, int y);
}

namespace task_b
{
 void run(int x, int y);
 void run(double x, double y);
}

int main()
{
 using namespace task_a;
 run(1.0, 1.0);
}

int main()
{
 using namespace task_b;
 run(1.0, 1.0);
}

namespace task_c
{
 void run(double x, double y);
}
namespace
{
 void run(double x, double y);
}

int main()
{
 run(1.0, 1.0);
 task_c::run(1.0, 1.0);
}

In what case are we strictly overloading “run” (within a single namespace)?
In each of the cases, which version of “run” will be executed?

1514th September 2022INF205

Core Guidelines on namespaces

(This makes it easy to distinguish “helper” code from that needed outside.)

SF.20: Use namespaces to express logical structure

Use of the “unnamed namespace” construction: namespace{ … }

– SF.21: Don’t use an unnamed namespace in a header
– SF.22: Use an unnamed namespace for all internal/non-exported entities

void do_task_a(int x);
void do_task_b(int x);
void do_task_c(int x);
…

namespace
{
 int transform(int x) { … }
}

void do_task_a(int x)
{
 int y = transform(x);
 …
}

header file, *.h

code file, *.cpp
was declared in the header

cannot have been declared outside

1614th September 2022INF205

Example problem: Use of “auto”

What data types will the compiler use below where it says auto?

1) float y = 2.5; const auto x1 = y;

2) auto x2 = 2;

3) const auto x3 = x1*x2;

4) auto x4 = 'C';

5) auto x5 = x3 + x4;

6) auto x6 = x4++;

7) auto x7 = ++x1;

8) auto x8; std::cin >> x8; This may depend on
the compiler!

INF205 14th September 2022

1 C++ basics

1.5 Fundamental data types
1.6 Scopes and namespaces
1.7 Data at the memory level

1814th September 2022INF205

Observations: Data types

The realization of C/C++ fundamental data types in memory, including their
size, can be machine-dependent and even compiler-dependent.

The keyword sizeof is used to obtain the size of a variable in memory, in bytes.

size of int: 4 (int)-1 = -1

size of short: 2 (short)-1 = -1
size of long: 8 (long)-1 = -1
size of long long: 8 (long long)-1 = -1

size of unsigned short: 2 (unsigned short)-1 = 65535
size of unsign. long long: 8 (unsigned long long)-1 = 18446744073709551615

Example (check datatype-size.cpp)

1914th September 2022INF205

Observations: Data types

The realization of C/C++ fundamental data types in memory, including their
size, can be machine-dependent and even compiler-dependent.

The keyword sizeof is used to obtain the size of a variable in memory, in bytes.

size of int: 4 (int)-1 = -1

size of short: 2 (short)-1 = -1
size of long: 8 (long)-1 = -1
size of long long: 8 (long long)-1 = -1

size of unsigned short: 2 (unsigned short)-1 = 65535
size of unsign. long long: 8 (unsigned long long)-1 = 18446744073709551615

size of bool: 1 (bool)-1 = 1
size of char: 1 (char)-1 = �
size of wchar_t: 4 (wchar_t)-1 = -1

size of float: 4 (float)-1 = -1
size of double: 8 (double)-1 = -1
size of long double: 16 (long double)-1 = -1

Example (check datatype-size.cpp)

2014th September 2022INF205

Observations: Stack

Stack-based memory allocation is simple and safe:

– Memory handling and optimization can be
done at compile time, by the compiler

– Variable lifetime ends and memory is
released automatically by removing the
top element (frame 0) from the stack

– No need for an explicit deallocation of
memory by the programmer

– No need for an automatic garbage
collection running in the background

main int x retv (int)

select retv (int)int a
int b

retv (int)user_input int y int z

int select(int a, int b)
{
 if(a%2 == 0) return a;
 else return b;
}

int user_input()
{
 … select(y, z); …
}

addresses of a, b, and
return value (as offset, e.g.,
from the top of the stack)
are known at compile time

compiler knows where y
and z need to be written to
and where the return value
of select can be read from

stack
frame 0

stack
frame 1

stack
frame 2

2114th September 2022INF205

Observations: Stack

Backtrace and stack inspection using gdb

– Compile with “-g” or “-g3” option
– gdb three-functions

• break three-functions.cpp:6
• run

• bt [“backtrace”]

int select(int a, int b)
{
 if(a%2 == 0) return a;
 else return b;
}

int user_input()
{
 int y = 0, z = 0;
 std::cin >> y >> z;
 return select(y, z);
}

int main()
{
 int x = user_input();
}main int x retv (int)

select retv (int)int a
int b

retv (int)user_input int y int z

#0 select (a=4, b=3) at three-functions.cpp:6
#1 [...] user_input () at three-functions.cpp:14
#2 [...] main () at three-functions.cpp:19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Breakpoint 1, select (a=4, b=3) at three-functions.cpp:6
6 if(a%2 == 0) return a;

stack
frame 0

stack
frame 1

frame 2

INF205 14th September 2022

1 C++ basics

1.5 Fundamental data types
1.6 Scopes and namespaces
1.7 Data at the memory level
1.8 Toward OOP in C/C++

2314th September 2022INF205

Structures: Object orientation from C

The structure (struct) was introduced as a device for OOP-like programming in
the C language. It is retained in C++, where it is seen as somewhat archaic.

Structures group different variables (properties) together into one composite
data type. In C, that is all they do. Each instance of a structure is called an
object; each object has its own instance of the structure’s properties. In C++, a
structure can also have methods, i.e., functions with the structure name as a
prefix that are called and carried out for an individual object.

Structures are what comes closest in C/C++ to object orientation from Python:
Structure elements are accessible from outside the structure. They’re “public”.

Example:
– A book indexation structure, giving a position in a book in terms of

chapter number, section number, and page number.
– Methods can be used for going to the next chapter, section, page.
– But we can also directly set chapter and section numbers from outside.

2414th September 2022INF205

Example: struct syntax and use

struct BookIndex
{
 int chapter = 1;
 int section = 1;
 int page = 1;

 int next_chapter();
 int next_section();
 int next_page();

 void out();
};

int BookIndex::next_chapter()
{
 chapter++;
 section = 1;
 page++;
 return chapter;
}

…

void BookIndex::out()
{
 std::cout
 << "Section " << chapter
 << "." << section
 << ", p. "<< page << "\n";
}

header file contains
method declarations

code file contains the
method implementation

int j.chapter

int j.section

int j.page

BookChapter j

int i.chapter

int i.section

int i.page

BookChapter i

Each BookChapter
object contains
three int variables:

INF205 14th September 2022

INF205
Resource-efficient programming

I C++ basics

I.5 Fundamental data types
I.6 Scopes and namespaces
I.7 Data at the memory level
I.8 Toward object orientation in C/C++

	Lysbilde 1
	Lysbilde 2
	Lysbilde 3
	Lysbilde 4
	Lysbilde 5
	Lysbilde 6
	Lysbilde 7
	Lysbilde 8
	Lysbilde 9
	Lysbilde 10
	Lysbilde 11
	Lysbilde 12
	Lysbilde 13
	Lysbilde 14
	Lysbilde 15
	Lysbilde 16
	Lysbilde 17
	Lysbilde 18
	Lysbilde 19
	Lysbilde 20
	Lysbilde 21
	Lysbilde 22
	Lysbilde 23
	Lysbilde 24
	Lysbilde 25

