
INF205 21st September 2022

INF205
Resource-efficient programming

1 C++ basics

1.8 Structures
1.9 Argument passing
1.10 Memory (de)allocation
1.11 Working with pointers/arrays

221st September 2022INF205

Programming paradigms

Imperative programming
– It is stated, instruction by instruction, what

the processor should do
– Control flow implemented by jumps (goto)

Structured programming
– Same, but with higher-level control flow
– Contains “instruction by instruction” code

Procedural programming
– Functions (procedures) as highest-level

structural unit of code
– Still contains loops, etc., for control flow

within a function

Object-oriented programming
– Classes as highest-level structural unit of

code; objects instantiate classes
– Still contains functions, e.g., as methods

Functional programming
(also: “declarative programming”)

Logic programming

Constraint programming

Programming paradigms based
on describing the solution

rather than computational steps:

321st September 2022INF205

Why object orientation?

The job of variables is to store data. In object oriented programming (OOP)
the focus is on how data belong together and how we can facilitate safe and
correct access to data. How do data-centered tools (DBs, etc.) present data?

Example: “Largest cities by
country” query on Wikidata.

421st September 2022INF205

Module feedback (& mike test)

Thanks for
providing the
recommendations!

(Next in week 39.)

some acoustics
test is needed …

521st September 2022INF205

Tutorial: Performance measurement

even numbers

multiples of three

multiples of five

multiples of seven

hypothesis:
O(n1/e) scaling

O(n1/2) scaling

Grey data points:
Measurement outcome for the given value of n

Brown points (running average):
Average over 500 data points centered around n

INF205 21st September 2022

1 C++ basics

1.8 Structures

721st September 2022INF205

Structures: Object orientation from C

Structures (struct) were introduced as device for OOP-like programming in C.
Most of the time, OOP in C++ uses classes, but C++ still has structures.

Structures group different variables (properties) together into one composite
data type. Each instance of a structure is called an object; each object has its
own instance of the properties. In C++, structures can have methods, i.e.,
functions defined for the structure and carried out for an individual object.

Structures are what comes closest in C/C++ to object orientation from Python:
Structure elements are accessible from outside the structure. They’re “public”.

Example:
– A book indexation structure, giving a position in a book in terms of

chapter number, section number, and page number.
– Methods can be used for going to the next chapter, section, page.
– But we can also directly set chapter and section numbers from outside.

821st September 2022INF205

Example: struct as a collection of fields

struct BookIndex
{
 int chapter = 1;
 int section = 1;
 int page = 1;
};

int j.chapter

int j.section

int j.page

BookIndex j

int i.chapter

int i.section

int i.page

BookIndex i

Each BookIndex
object contains
three int variables:

BookIndex i, j;

i.chapter = 1;
i.section = 8;
i.page = 8;

Here we declare to
BookIndex objects, i and j.

Are we initializing them also?

We can directly access the fields of the structure
because they are public.

921st September 2022INF205

Toward OOP: Syntax for methods

struct BookIndex
{
 int chapter = 1;
 int section = 1;
 int page = 1;

 int next_chapter();
 int next_section();
 int next_page();

 void out();
};

int BookIndex::next_chapter()
{
 chapter++;
 section = 1;
 page++;
 return chapter;
}

…

void BookIndex::out()
{
 std::cout
 << "Section " << chapter
 << "." << section
 << ", p. "<< page << "\n";
}

header file contains
method declarations

code file contains the
method implementation

int j.chapter

int j.section

int j.page

BookIndex j

int i.chapter

int i.section

int i.page

BookIndex i

Each BookIndex
object contains
three int variables:

1021st September 2022INF205

Python classes and C++ structures
struct BookIndex
{
 int chapter = 1;
 int section = 1;
 int page = 1;

 int next_chapter();

 int next_section();

 int next_page();

 void out();
}

int BookIndex::next_chapter() {
 chapter++;
 section = 1;
 page++;
 return chapter;
}

int BookIndex::next_section() {
 section++;
 return section;
}

int BookIndex::next_page() {
 page++;
 return page;
}

void BookIndex::out() {
 cout << "Section " << chapter << "."
 << section << ", p. " << page << "\n";
}

int main() {
 BookIndex idx;
 idx.chapter = 1;
 idx.section = 8;
 idx.page = 25;

 idx.out();
}

How do Python and C++
deal with argument passing?

INF205 21st September 2022

1 C++ basics

1.8 Structures
1.9 Argument passing

1221st September 2022INF205

Argument passing

In Python, object references are passed by value (i.e., “pass by object reference”):

Argument passing by object reference in Python (similarly, in Java)

address
&x

value
x address

&y
value

y

object x

x has changed

&y is &x

y.change()

function call f(x)

object reference “y”
object reference “x”

Argument passing by value

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x is 4

finally, x is still 4

initially, y is 4

y = 5

 &y is unrelated to &x

1321st September 2022INF205

Example: struct passed by value

In book-index-test.cpp from the “struct BookIndex” example:

– In int main(), an object BookIndex idx is declared.
– idx is set to Section 1.8, p. 25.
– idx is then passed by value to a method that increments the chapter:

namespace pass_by_value
{
 void start_chapter(BookIndex b)
 {
 b.next_chapter();
 b.out();
 }
}

int main()
{
 … /* idx set to Section 1.8, p. 25 */

 using namespace pass_by_value;
 start_chapter(idx);

 idx.out();
 …
}

What is happening at the memory level?
How many BookIndex objects are there in memory, and what do they contain?

What output can
we expect?

What output can
we expect?

1421st September 2022INF205

Example: struct passed by reference

Let us pass the parameter by reference, by adding “&” to the called function:

– In int main(), an object BookIndex idx is declared.
– idx is set to Section 1.8, p. 25.
– idx is then passed by reference to a method that increments the chapter:

namespace pass_by_reference
{
 void start_chapter(BookIndex& b)
 {
 b.next_chapter();
 b.out();
 }
}

int main()
{
 … /* idx set to Section 1.8, p. 25 */

 using namespace pass_by_reference;
 start_chapter(idx);

 idx.out();
 …
}

What is happening at the memory level?
How many BookIndex objects are there in memory, and what do they contain?

What output can
we expect?

What output can
we expect?

1521st September 2022INF205

Pointers for memory address data
A pointer is a variable that has a memory address as its value.

– BookIndex* b is a pointer to the address of a BookIndex object.
– The address of an object is obtained by referencing, e.g., b = &idx;
– While b is the address, it can be dereferenced (*b) to access the content.
– For objects, there is the -> operator: Write b->prop instead of (*b).prop.

namespace pass_by_reference
{
 void start_chapter(BookIndex* b)
 {
 b->next_chapter();
 b->out();
 }
}

int main()
{
 … /* idx set to Section 1.8, p. 25 */

 using namespace pass_by_reference;
 start_chapter(&idx);

 idx.out();
 …
}

What is happening at the memory level?
How many BookIndex objects are there in memory, and what do they contain?

What output can
we expect?

What output can
we expect?

1621st September 2022INF205

Two ways of “passing by reference”

Pass by value: A new copy of the argument value(s) is created in memory. The
function works with the copy. The function cannot access the original variable.

Pass by reference: The function is enabled to access the original variable at its
address in memory. No copy is created. Changes affect the original variable.
C++ has two mechanisms for this: Passing a reference and passing a pointer.*

*Unfortunately there is some terminology confusion about this. We will call both “pass by reference.”

address
&x

value
x

address
&y = &x

value
y = x

variable x

x has changed

&y is &x
change yfunction

call f(x)

type X& reference yvariable x of type X
void f(X& y)

1721st September 2022INF205

Two ways of “passing by reference”

Pass by value: A new copy of the argument value(s) is created in memory. The
function works with the copy. The function cannot access the original variable.

Pass by reference: The function is enabled to access the original variable at its
address in memory. No copy is created. Changes affect the original variable.
C++ has two mechanisms for this: Passing a reference and passing a pointer.*

*Unfortunately there is some terminology confusion about this. We will call both “pass by reference.”

address
&x

value
x

address
&y = &x

value
y = x

variable x

x has changed

&y is &x
change yfunction

call f(x)

type X& reference yvariable x of type X
void f(X& y)

address
&x

value
x

value
y = &x

variable x

x has changed

y is &x
change *yfunction

call f(&x)

type X* pointer yvariable x of type X
void f(X* y)

1821st September 2022INF205

Referencing/dereferencing operators

Referencing operator &:
– Used to obtain the address of a variable: &x is the address of x.
– If x has type X, the address has the type X*, i.e., “pointer to X.”

• int x = 5; int* y = &x;
– A second, independent use of this operator is “passing a reference” as

a function argument, e.g., as in void start_chapter(BookIndex& b);

Dereferencing operator *:
– If y is a pointer of type X* (pointer to X), the value of y is an address.
– To access the value stored at the address y, we dereference it as *y.
– The value stored at y, and accessed by *y, is then of type X.
– & and * are inverse operators, therefore, *(&x) is the same as x:

• int x = 5; int* y = &x; cout << x << “ is the same as “ << *y;

The combined dereferencing and object property access operator -> is an
abbreviation: y->prop is short for (*y).prop. It is applied to pointers to objects.

1921st September 2022INF205

Lifetime of variables: What is wrong?

• What happens upon execution of the code below at the memory level?
• Why does it lead to an error? (Segmentation fault.)
• What lifetime do the variables have?

BookIndex* input_book_index()
{
 BookIndex x;

 std::cout << "input Chapter no.: ";
 std::cin >> x.chapter;
 // …

 std::cout << "BookIndex object: ";
 x.out(); // output: where are we in the book?

 // return pointer to x
 return &x;
}

int main()
{
 BookIndex* idx = input_book_index();

 // go to the next chapter
 //
 idx->next_chapter();
 std::cout << "Updated book index: ";
 idx->out(); // output: where are we now?
}

INF205 21st September 2022

1 C++ basics

1.8 Structures
1.9 Argument passing
1.10 Memory (de)allocation

2121st September 2022INF205

Memory allocation and deallocation

Allocation: Reserve memory to store data. Deallocation: Release the memory.

The stack is already handled completely and safely by the compiler. Memory
on the stack (local variables of functions) is allocated as part of a stack frame
when the function is called. It is deallocated again when the function returns.

Memory on the heap is managed independent of the stack, at runtime,
subject to explicit allocation and deallocation instructions that must come
from the programmer. There is no garbage collection in C++!

– Allocation is done with new. Example: int* i = new int(42);
– Deallocation is done with delete. Example: delete i;

Discussion:

– How can it ever be justified to use the heap? When shouldn’t we do it?

– What “new” and “delete” statements are needed in order to fix the bug
from the “lifetime of variables” example? (Slide 19.)

initialization to *i = 42

INF205 21st September 2022

1 C++ basics

1.8 Structures
1.9 Argument passing
1.10 Referencing/dereferencing
1.11 Working with pointers and arrays

2321st September 2022INF205

C/C++ arrays (static arrays)

An array contains a sequence of elements of the same type, arranged
contiguously in memory. This supports fast access using pointer arithmetics.
Once created, the size of a C/C++ array is fixed; we cannot append elements.

In C/C++, the type of an array such as int[] is the same as the corresponding
pointer type int*, i.e., the array actually is a pointer. Its value is an address at
which an integer is stored, namely, the memory address of the first element.

This is highly efficient since when x[i] is accessed, the compiler transforms this
into accessing the memory address x + sizeof(int) * i.

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &(x[0]) x + 3 = &(x[3]) x + 6 = &(x[6])

2421st September 2022INF205

Lists in Python (dynamic arrays)

Conventional arrays are static data structures. Their size in memory is constant,
and memory needs to be allocated only once, e.g., at declaration time. (Details
depend on programming language, compiler, flags/optimization level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future. When the capacity of the dynamic array is
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12

x[0] x[1] x[2] x[3]

4

x.length

x = [34, 1, 7, 12]

Note: More memory is allocated than strictly necessary.
Like before, the elements are contiguously arranged in memory.

logical
size is 4

free free

capacity is 6

2521st September 2022INF205

Remarks on working with pointers

How do we declare a pointer?
– Like any other variable. Its type is a pointer type; e.g., int* my_int_pointer;

How do we initialize a pointer?
– Initialize to nullptr (pointer version of 0): int* my_int_pointer = nullptr;
– Initialize to another variable’s address: int* my_int_pointer = &my_index;
– Allocate memory on the heap: int* my_int_pointer = new int(0);

How do we deallocate a variable if it is stored on the heap?
– Delete the pointer to it. Example: b = new BookIndex; …; delete b;

How to release the memory if it is a local variable that is stored on the stack?
– Don’t do that! You can only call “delete” on memory allocated with “new”.

What if we call new, but there is not enough free memory left on the system?
– new VeryBigObject may throw an exception (a high-level construct).
– new(std::nothrow) VeryBigObject may return nullptr (low-level construct).

2621st September 2022INF205

Remarks on working with arrays

How do we declare a array?
– Give the size as constant expression in square brackets; e.g., int values[6];
– Also possible: Just declare a pointer; e.g., int* values;

How do we initialize an array?
– Explicitly give all the values: int values[] = {4, 2, 3, -7, 2, 3};
– Initialize to all zeroes, indicating the array size: int values[6] = { };
– Allocate memory with default initialization: int* values = new int[6]();

How do we deallocate an array if it is stored on the heap?
– Use delete[]. Example: b = new BookIndex[100](); …; delete[] b;
– Pitfall: If you use delete instead of delete[], only b[0] will be deallocated!

What if we call new, but there is not enough free memory left on the system?
– new BigObject[100000]() may throw an exception.
– new(std::nothrow) BigObject[100000]() may return nullptr.

2721st September 2022INF205

Pointers: Three most typical mistakes

1) Access a pointer that was not initialized, or that has the value nullptr, or that
for any other reason points to an invalid address in memory. (“Wild pointer.”)

2) Memory is allocated using new, but not deallocated again using delete.
This is called a memory leak.

• Discussion: Why is this dangerous? Why is it hard to fix in debugging?

3) Memory has been deallocated: Either it was on the stack in a stack frame
that has been removed, or there has been a delete statement. But the address
information was stored in a pointer that still exists: A dangling pointer!

● In the “variable lifetime” bug example, there was a dangling pointer.

There are a few techniques in C++ that help us write safer code with explicit
memory management, still done on the heap but less prone to pitfalls. We will
look at several of these techniques further ahead in the course of the module.

2821st September 2022INF205

Memory leak: Example
The “memory-leak.zip” code seems to work well, at least for some time.
In fact it has a memory leak, leading to a crash or even hanging up the system.

Discussion:
– What is strictly wrong about the code?
– In what ways is the code ill-designed?

… to be continued in the tutorial.

bool is_prime(int64_t* n) {
 if((*n%2 == 0) || (*n%3 == 0)) {
 delete n; return false;
 }

 for(int64_t i = 5; *n >= i*i; i += 6) {
 if((*n % i == 0) || (*n % (i+2) == 0)) {
 delete n; return false;
 }
 }

 return true;
}

double time_measurement(int64_t n) {
 auto t0 = high_resolution_clock::now();
 for(int i = 0; i < num_tests; i++) {
 is_prime(new int64_t{n});
 }
 auto t1 = high_resolution_clock::now();

 return duration_cast<nanoseconds>(t1-t0).count()
 / (double)num_tests;
}

int main() {
 for(int64_t x = xmin; xmax >= x; x += xstep)
 cout << x << "\t" << time_measurement(x) << "\n";
}

INF205 21st September 2022

Conclusion

INF205 21st September 2022

INF205
Resource-efficient programming

1 C++ basics

1.8 Structures
1.9 Argument passing
1.10 Memory (de)allocation
1.11 Working with pointers/arrays

