Norges miljg- og

et
T o
INF205

Resource-efficient programming

1 C++ basics

1.8  Structures

1.9 Argument passing

1.10 Memory (de)allocation

1.11 Working with pointers/arrays

INF205 21* September 2022



Programming paradigms

Imperative programming
— ltis stated, instruction by instruction, what
the processor should do
— Control flow implemented by jumps (goto)

Structured programming
— Same, but with higher-level control flow
— Contains “instruction by instruction” code

Procedural programming
— Functions (procedures) as highest-level
structural unit of code
— Still contains loops, etc., for control flow
within a function

Object-oriented programming
— Classes as highest-level structural unit of
code; objects instantiate classes
— Still contains functions, e.g., as methods

r' J Norwegian University
- of Life Sciences

Programming paradigms based
on describing the solution
rather than computational steps:

Functional programming
(also: “declarative programming”)

Logic programming

Constraint programming

INF205 21° September 2022 2



Why object orientation?

u
[ 4

N —

Norwegian University

of Life Sciences

The job of variables is to store data. In object oriented programming (OOP)

the focus is on how data belong together and how we can facilitate safe and

correct access to data. How do data-centered tools (DBs, etc.) present data?

Example: “Largest cities by

country” query on Wikidata.

I visoata query service

| E=> Eksempler | | Sparringsbygger | | @ Hjelp |v‘ | 1} Flere verktay ‘v| Mp, norsk (bokmal)
o 1 #Largest cities per country
2 SELECT DISTINCT ?city 7citylLabel ?population ?country ?countrylLabel ?loc WHERE {
3 {
x 4 SELECT (MAX(?population_) AS ?population) ?country WHERE {
4' 5 7city wdt:P31/wdt:P279* wd:Q515 .
6 ?city wdt:P1682 ?population_ .
@ 7 ?city wdt:P17 Zcountry .
8 1
=] 9 GROUP BY ?country
10 ORDER BY DESC{?7population)
D 1 }
12 ?city wdt:P31/wdt:P279* wd:0Q515 .
[ |13 ?city wdt:P1882 ?population .
14 ?city wdt:P17 ?country .
00 15 ?city wdt:P625 ?loc .
16 SERVICE wikibase:label {
17 bd:serviceParam wikibase:language "en" .
18| }
O
| 20 ORDER BY DESC(?population)
' =
®- @ 290 resultater i lopet av 4117 ms <> Kode X Last ned~ & Lenke~

INF205

city

Qwd:Q172

Q wd:Q1480

Q wd:Q585

Q wd:Q1761

Q wd:Q1781

Q wd:Q2807

Q wd:Q60

Q wd:Q240

Q wd:Q1842

Q wd:Q1757

Q wd:Q1754

Q wd:Q1748

Q wd:Q270

cityLabel

Toronto

Tokyo

Oslo

Dublin

Budapest

Madrid

New York City

Brussels-Capital
Region

Luxembourg

Helsinki

Stockhalm

Copenhagen

Warsaw

21% September 2022

population

2731571

14047594

693494

553165

1723836

3305408

8804190

1218255

128512

643272

978770

644431

1790658

country

Qwd:Q16

Qwd:17

Q wd:Q20

Q wd:Q27

Q wd:Q28

Q wd:Q29

Q wd:Q30

Q wd:Q31

Q wd:Q32

Q wd:Q33

Q wd:Q34

Q wd:Q35

Q wd:Q36

v

countryLabel

Canada

Japan

Norway

Republic of Ireland

Hungary

Spain

United States of
America

Belgium

Luxembourg

Finland

Sweden

Denmark

Poland

loc

Point(-79.386666666 |
43.670277777)

Point(139.691722222
35.689555555)

Point(10.738888888
59.913333333)

Point(-6.260277777
53.348722222)

Point(19.040833333
47.498333333)

Point(-3.7025
40.416666666)

Point(-74.0 40.7)

Point{4.3525
50.846666666)

Point(6.132777777
49.610555555)

Point(24.93417 60.17556)

Point(18.068611111
59.328444444)

Point(12.568888888
55.676111111)

Point(21.011111111
52.23)



IVI U
r- _J §f°[;’;’:gi:ir;:cnei:ersity
odule feedback (& mike test) N

= ==l v- VYo Y= =M
5

T b o E Lo e Py i NS R TN N T I T ( NCT T i TNCEN W - N N - VNS T S s - T e T 1 [

Feedback and recommendations for INF205 (15th September 2022)
Thanks for
providing the
recommendations!

Log out from your Google account before commenting.

* Using the microphone during lectures gives a double-layered effect for the
ones in the physical audience. One fix for this could be turning off the

speakers, keeping the microphone on for recordings. :) <3 ( N ext | n wee k 3 9 )

o It would be nice with a bit more examples for the theory in the lectures, for
example on the use of header-file and the linking of object files into an
executable file.

o [t might be a good idea to give more precise definitions of terms and
concepts, and write those on the PowerPoint before digging into the details.
Example; the terms “scopes” and “namespaces” from last lecture

o More practical programming exercises in addition to theory

some acoustics
o TBO, | am very bad at staying focused throughout the lectures. What | do c
know is that the blackboard in TF1-102 is quite bad. | would recommend test is needed ...
sticking to white chalk or at least check beforehand if the chalk is visible on
the blackboard.

o |like that it is easier to hear you clearly when you use the microphone in
class. | suggest you change your Screensaver settings to avoid the
occasional interruption.

INF205 21° September 2022 4



Tutorial: Performance measurement

measured function execution time in nanoseconds

INF205

10000

1000

100

—_
(an)

r' J Norwegian University
- of Life Sciences

1 Grey data points:
41 Measurement outcome for the given value of n
] O(n'"?) scaling
Brown points (running average):
~| Average over 500 data points centered around n
- hypothesis:
| 1 O(n'¢) scaling
] multiples of seven
. multiples of five
: multiples of three
] even numbers
T T Illllll T T ||l|||| T T ||||||| T T ||||||| T T T TTTT
10 10° 10° 10’ 10° 10°

integer value n passed to the function

21% September 2022 5



Noregs milj@- og

U
M BI I biovitskaplege

N universitet

1 C++ basics

1.8 Structures

INF205 21* September 2022



r' J Norwegian University
- of Life Sciences

Structures: Object orientation from C

Structures (struct) were introduced as device for OOP-like programming in C.
Most of the time, OOP in C++ uses classes, but C++ still has structures.

Structures group different variables (properties) together into one composite
data type. Each instance of a structure is called an object; each object has its
own instance of the properties. In C++, structures can have methods, i.e.,
functions defined for the structure and carried out for an individual object.

Structures are what comes closest in C/C++ to object orientation from Python:
Structure elements are accessible from outside the structure. They're “public”.

Example:
— A book indexation structure, giving a position in a book in terms of
chapter number, section number, and page number.
— Methods can be used for going to the next chapter, section, page.
— But we can also directly set chapter and section numbers from outside.

INF205 21° September 2022 7



r' J Norwegian University
- of Life Sciences

Example: struct as a collection of fields " —

struct BookIndex Each Booklndex
{ object contains
int chapter = 1; Here we declare to three int variables:
int section = 1; Booklndex objects, i and j. ,
1t bage = 1- Bookindex i
. e ' Are we initializing them also?
ki / int i.chapter
{ int i.section
Booklndex i, j; inti.page
i.chapter = 1; Bookindex |
i.section = §;
7 i.page = 8; int j.chapter
/ int j.section

We can directly access the fields of the structure

because they are public. int j.page

INF205 21° September 2022



r' J Norwegian University
- of Life Sciences

N
Toward OOP: Syntax for methods
struct Bookindex int Booklndex::next_chapter() Each Booklndex
{ { object contains
int chapter = 1; chapter++; three int variables:
int section = 1; section = 1; .
it sEge = paget+: BooklIndex i
| return chapter; int i.chapter
int next_chapter(); }
int next_section(); int i.section
int next_page();
inti.page
void out(); void BookIndex::out()
) { Bookindex |
std::cout L
‘ ) S int j.chapter
header file contains << "Section " << chapter
method declarations << "." << section int j.section
<< ”, p. ||<< page << II\nII;
code file contains the } int j.page
method implementation

INF205 21° September 2022 9



u
[ 4

Python classes and C++ structures

struct Booklndex

INF205 21° September 2022

Norwegian University

of Life Sciences

In [1]: |class BookIndex: { N
def _ init_ (self): int chapter = 1;
self._chapter = 1 int e =1
se{;'—se‘:ﬂ:"; ! s etagleln) =1 int BookIndex::next_chapter( ) {
self._page int page = 1; chapter++;
def next chapter(self): section = 1;
self._chapter += 1 ) page++;
::{;._;:;:12: -1= 1 int next_chapter(); R AR
return self. chapter }
int BookIndex::next_section() {
def next section(self): 2 ] — n R
SoL17 section a1 int next_section(); e
return self._section return section;
def next_page(self): . . }
self. page += 1 int neXt_page(), int BookIndex::next_page() {
return self. page page++;
def out(self): . (S BagE:
print("Section ", self. chapter, \ void out(); }
L self._sectigg. LK P:' ": \ } void BookIndex::out( ) {
self._page, sep="", end="\n") cout << "Section " << chapter << "."
In (2): [1dx = BookIndex() int main() { << section << ", p. " << page << "\n";
idx. chapter = 1 BookIndex idx; }
idx. section = 8 . _ 4.
idx, page = 25 idx.chapter = 1;
vt idx.section = 8;
X.0Uu .
idx.page = 25;
Section 1.8, p. 25
idx.out();
In [ ]: |def start chapter(b): }
b.next_chapter()
b.out()
In [ ]:|start_chapter(idx) e How do PythOn and C++
idx.out() ; i ?
deal with argument passing”

10



Noregs milj@- og

U
M BI I biovitskaplege

N universitet

1 C++ basics

1.8 Structures
1.9 Argument passing

INF205 21* September 2022



r' J Norwegian University
- of Life Sciences

Argument passing

In Python, object references are passed by value (i.e., “pass by object reference”):

Argument passing by object reference in Python (similarly, in Java)

"_n

object reference “x

object x object reference "y” :
J address value : Y &y is &x
&x\ X adg(ress value el
x has changed \/7 y Y

function call f(x)

Argument passing by value
&y is unrelated to &x

variable name “x”
initially, x is 4 variable name "y"
address value X initially, y is 4
&x X \ address value .
. o & Ly Y =
finally, x is still 4 \//

INF205 21° September 2022 12



r' J Norwegian University
- of Life Sciences

Example: struct passed by value

In book-index-test.cpp from the “struct Bookindex” example:

— Inint main(), an object Bookindex idx is declared.
— idx is set to Section 1.8, p. 25.
— idx is then passed by value to a method that increments the chapter:

int main() namespace pass_by_value
{ {
... /* idx set to Section 1.8, p. 25 */ void start_chapter(BookIndex b)
using namespace pass_by_value; {
start_chapter(idx); b.next_chapter();
, . b.out();
idx.out(); !
0F -— What output can ] T What output can
we expect? ) we expect?
}

What is happening at the memory level?
How many Booklndex objects are there in memory, and what do they contain?

INF205 21° September 2022 13



r' J Norwegian University
- of Life Sciences

Example: struct passed by reference

Let us pass the parameter by reference, by adding “&” to the called function:

— Inint main(), an object Bookindex idx is declared.
— idx is set to Section 1.8, p. 25.
— idx is then passed by reference to a method that increments the chapter:

int main() namespace pass_by_reference
{ {
... /*idx set to Section 1.8, p. 25 */ void start_chapter(Bookindex& b)
using namespace pass_by_reference; {
start_chapter(idx); b.next_chapter();
. ) b.out();
idx.out(); !
(F —0 What output can ] T What output can
we expect? ) we expect?
}

What is happening at the memory level?
How many Booklndex objects are there in memory, and what do they contain?

INF205 21° September 2022 14



r' J Norwegian University
- of Life Sciences

Pointers for memory address data

A pointer is a variable that has a memory address as its value.

— Bookindex* b is a pointer to the address of a Booklndex object.

— The address of an object is obtained by referencing, e.g., b = &idx;

— While b is the address, it can be dereferenced (*b) to access the content.
— For objects, there is the -> operator: Write b->prop instead of (*b).prop.

int main() namespace pass_by_reference
{ {
... /*idx set to Section 1.8, p. 25 */ void start_chapter(Bookindex* b)
using namespace pass_by_reference; {
start_chapter(&idx); b->next_chapter();
. . b->out();
idx.out(); i
(F —0 What output can ] T What output can
we expect? ) we expect?
}

What is happening at the memory level?
How many Booklndex objects are there in memory, and what do they contain?

INF205 21° September 2022 15



Two ways of “passing by reference”

— U
[ 4

Norwegian University
of Life Sciences

Pass by value: A new copy of the argument value(s) is created in memory. The
function works with the copy. The function cannot access the original variable.

Pass by reference: The function is enabled to access the original variable at its
address in memory. No copy is created. Changes affect the original variable.
C++ has two mechanisms for this: Passing a reference and passing a pointer.*

variable x

x has changed

variable x of type X

address
&x

value
X

void f(X& y)

function

call f(x)

type X& reference y
address value
&y = &x y =X

&y is &x
changey

*Unfortunately there is some terminology confusion about this. We will call both “pass by reference.”

INF205

21% September 2022

16



Two ways of “passing by reference”

r' J Norwegian University
- of Life Sciences

Pass by value: A new copy of the argument value(s) is created in memory. The
function works with the copy. The function cannot access the original variable.

Pass by reference: The function is enabled to access the original variable at its
address in memory. No copy is created. Changes affect the original variable.
C++ has two mechanisms for this: Passing a reference and passing a pointer.*

variable x of type X

variable x

address
&x

value
X

x has changed

variable x of type X

variable x

address
&x

value
X

x has changed

void f(X& y)

function

call f(x)

void f(X* y)

function
call f(&x)

type X& reference y
address value &y is &x
&y = &x y =X changey

type X* pointery

value
y = &x

y is &x
change *y

*Unfortunately there is some terminology confusion about this. We will call both “pass by reference.”

21% September 2022

INF205

17



r' J Norwegian University
- of Life Sciences

Referencing/dereferencing operators

Referencing operator &:
— Used to obtain the address of a variable: &x is the address of x.
— If x has type X, the address has the type X*, i.e., “pointer to X.”
* intx=05; int*y = &x;
— A second, independent use of this operator is “passing a reference” as
a function argument, e.g., as in void start_chapter(Bookindex& b);

Dereferencing operator *:
— Ifyis a pointer of type X* (pointer to X), the value of y is an address.
— To access the value stored at the address y, we dereference it as *y.
— The value stored aty, and accessed by *y, is then of type X.
— & and * are inverse operators, therefore, *(&x) is the same as x:
* intx=05; int*y =&x; cout << x<<"isthe same as"” << *y;

The combined dereferencing and object property access operator -> is an
abbreviation: y->prop is short for (*y).prop. It is applied to pointers to objects.

INF205 21° September 2022 18



r' J Norwegian University
- of Life Sciences

Lifetime of variables: What is wrong?

* What happens upon execution of the code below at the memory level?
* Why does it lead to an error? (Segmentation fault.)
* What lifetime do the variables have?

BookIndex* input_book_index() int main()

{ {
Bookindex x; BookIndex* idx = input_book_index();
std::cout << "input Chapter no.: *; // go to the next chapter
std::cin >> x.chapter; //
/... idx->next_chapter();

std::cout << "Updated book index: ";

std::cout << "BookIndex object: *; idx->out(); // output: where are we now?
x.out(); // output: where are we in the book? }

// return pointer to x
return &x;

}
INF205 21° September 2022 19



Noregs milj@- og

U
M BI I biovitskaplege

N universitet

1 C++ basics

1.8 Structures
1.9 Argument passing

1.10 Memory (de)allocation

INF205 21* September 2022



r' J Norwegian University
- of Life Sciences

Memory allocation and deallocation
Allocation: Reserve memory to store data. Deallocation: Release the memory.

The stack is already handled completely and safely by the compiler. Memory
on the stack (local variables of functions) is allocated as part of a stack frame
when the function is called. It is deallocated again when the function returns.

Memory on the heap is managed independent of the stack, at runtime,
subject to explicit allocation and deallocation instructions that must come
from the programmer. There is no garbage collection in C++!

— Allocation is done with new. Example: int* i = new int(42);

— Deallocation is done with delete. Example: delete i;
initialization to *i = 42
Discussion:

— How can it ever be justified to use the heap? When shouldnt we do it?

— What "new” and “delete” statements are needed in order to fix the bug
from the “lifetime of variables” example? (Slide 19.)
INF205 21° September 2022 21



Noregs milj@- og

U
M BI I biovitskaplege

N universitet

1 C++ basics

1.8 Structures
1.9 Argument passing

1.10 Referencing/deretferencing
1.11 Working with pointers and arrays

INF205 21* September 2022



r' J Norwegian University
- of Life Sciences

C/C++ arrays (static arrays)

An array contains a sequence of elements of the same type, arranged
contiguously in memory. This supports fast access using pointer arithmetics.
Once created, the size of a C/C++ array is fixed; we cannot append elements.

x[0] 1] x[2]  x[3]  x[4] x[3]  x[6]  x[7]

34 1 / 12 3 4 / 12

x = &(x[0]) X + 3 = &(x[3]) X + 6 = &(x[6])

In C/C++, the type of an array such as int[] is the same as the corresponding
pointer type int*, i.e., the array actually is a pointer. Its value is an address at
which an integer is stored, namely, the memory address of the first element.

This is highly efficient since when x[i] is accessed, the compiler transforms this
into accessing the memory address x + sizeof(int) * i.

INF205 21° September 2022 23



r' J Norwegian University
- of Life Sciences

Lists in Python (dynamic arrays)

Conventional arrays are static data structures. Their size in memory is constant,
and memory needs to be allocated only once, e.g., at declaration time. (Details
depend on programming language, compiler, flags/optimization level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future. When the capacity of the dynamic array is
exhausted, all of its contents need to be shifted to another position in memory.

x(0]  x[1]  x[2]  x[3] capacity is 6

34 1 7 12 free | free x=[34,1,7,12]

x.length Note: More memory is allocated than strictly necessary.
Like before, the elements are contiguously arranged in memory.

4

logical
INF205 size is 4 21% September 2022 24



r' J Norwegian University
- of Life Sciences

Remarks on working with pointers

How do we declare a pointer?
— Like any other variable. Its type is a pointer type; e.g., int* my_int_pointer;

How do we initialize a pointer?
— Initialize to nullptr (pointer version of 0): int* my_int_pointer = nullptr;
— Initialize to another variable’s address: int* my_int_pointer = &my_index;
— Allocate memory on the heap: int* my_int_pointer = new int(0);

How do we deallocate a variable if it is stored on the heap?
— Delete the pointer to it. Example: b = new Bookindex; ...; delete b;

How to release the memory if it is a local variable that is stored on the stack?
— Don't do that! You can only call “delete” on memory allocated with “new”.

What if we call new, but there is not enough free memory left on the system?
— new VeryBigObject may throw an exception (a high-level construct).
— new(std::nothrow) VeryBigObject may return nullptr (low-level construct).

INF205 21° September 2022 25



r' J Norwegian University
- of Life Sciences

Remarks on working with arrays

How do we declare a array?
— Give the size as constant expression in square brackets; e.g., int values[6];

— Also possible: Just declare a pointer; e.g., int* values;

How do we initialize an array?
— Explicitly give all the values: intvalues[ ] =1{4, 2, 3, -7, 2, 3};
— Initialize to all zeroes, indicating the array size: int values[6] ={ };
— Allocate memory with default initialization: int* values = new int[6]();

How do we deallocate an array if it is stored on the heap?
— Use delete[]. Example: b = new Bookindex[100](); ...; delete[] b;
— Pitfall: If you use delete instead of delete[], only b[0] will be deallocated!

What if we call new, but there is not enough free memory left on the system?
— new BigObject[100000]() may throw an exception.
— new(std::nothrow) BigObject[100000]() may return nullptr.

INF205 21° September 2022 26



r' J Norwegian University
- of Life Sciences

Pointers: Three most typical mistakes

1) Access a pointer that was not initialized, or that has the value nullptr, or that
for any other reason points to an invalid address in memory. ("Wild pointer.”)

2) Memory is allocated using new, but not deallocated again using delete.
This is called a memory leak.

* Discussion: Why is this dangerous? Why is it hard to fix in debugging?

3) Memory has been deallocated: Either it was on the stack in a stack frame
that has been removed, or there has been a delete statement. But the address
information was stored in a pointer that still exists: A dangling pointer!

* In the “variable lifetime” bug example, there was a dangling pointer.

There are a few techniques in C++ that help us write safer code with explicit
memory management, still done on the heap but less prone to pitfalls. We will
look at several of these techniques further ahead in the course of the module.

INF205 21° September 2022 27



r' I Norwegian University
- of Life Sciences

N —

Memory leak: Example

The “memory-leak.zip” code seems to work well, at least for some time.
In fact it has a memory leak, leading to a crash or even hanging up the system.

bool is_prime(int64_t* n) { double time_measurement(int64_t n) {
if(*n%2 == 0) || (*n%3 == 0)) { auto t0 = high_resolution_clock::now();
delete n; return false; for(inti=0; i < num_tests; i++) {
} is_prime(new int64_t{n});

}

for(inté4_ti=>5;*n >=i*; i +=
or(int64_ti=5;*n >=i%;i+= 6) { auto t1 = high_resolution_clock::now();

if((*n % i == 0)|| (*n % (i+2) == 0)) {

delete n; return false; return duration_cast<nanoseconds>(t1-t0).count()
} / (double)num_tests;
} }
return true; int main() {
} for(int64_t x = xmin; xmax >= x; X += xstep)

cout << x << "\t" << time_measurement(x) << "\n";
Discussion: }

— What is strictly wrong about the code?

— In what ways is the code ill-designed? , , ,
y J .. to be continued in the tutorial.

INF205 21° September 2022 28



B Noregs milj@- og
biovitskaplege
M universitet

Conclusion

INF205 21* September 2022



Norges miljg- og

et
T o
INF205

Resource-efficient programming

1 C++ basics

1.8  Structures

1.9 Argument passing

1.10 Memory (de)allocation

1.11 Working with pointers/arrays

INF205 21* September 2022



