
INF205 28th September 2022

INF205
Resource-efficient programming

1 C++ basics

1.12 On pass-by-reference
1.13 Classes
1.14 Inheritance
1.15 Streams

228th September 2022INF205

Working with pointers (recapitulation)

How do we declare a pointer?
– Like any other variable. Its type is a pointer type; e.g., int* my_int_pointer;

How do we initialize a pointer?
– Initialize to nullptr (pointer version of 0): int* my_int_pointer = nullptr;
– Initialize to another variable’s address: int* my_int_pointer = &my_index;
– Allocate memory on the heap: int* my_int_pointer = new int(0);

How do we deallocate a variable if it is stored on the heap?
– Delete the pointer to it. Example: b = new BookIndex; …; delete b;

How to release the memory if it is a local variable that is stored on the stack?
– Don’t do that! You can only call “delete” on memory allocated with “new”.

What if we call new, but there is not enough free memory left on the system?
– new VeryBigObject may throw an exception (a high-level construct).
– new(std::nothrow) VeryBigObject may return nullptr (low-level construct).

328th September 2022INF205

Working with arrays

How do we declare a array?
– Give the size as constant expression in square brackets; e.g., int values[6];
– Also possible: Just declare a pointer; e.g., int* values;

How do we initialize an array?
– Explicitly give all the values: int values[] = {4, 2, 3, -7, 2, 3};
– Initialize to all zeroes, indicating the array size: int values[6] = { };
– Allocate memory with default initialization: int* values = new int[6]();

How do we deallocate an array if it is stored on the heap?
– Use delete[]. Example: b = new BookIndex[100](); …; delete[] b;
– Pitfall: If you use delete instead of delete[], only b[0] will be deallocated!

What if we call new, but there is not enough free memory left on the system?
– new BigObject[100000]() may throw an exception.
– new(std::nothrow) BigObject[100000]() may return nullptr.

428th September 2022INF205

Tutorial problem: Structure

int count_collisions(
 int N, float size[], float coordx[],
 float coordy[], float coordz[]
);

int main() {
 …
 cin >> N;
 float* size = new float[N]();
 float* coordx = new float[N]();
 float* coordy = new float[N]();
 float* coordz = new float[N]();
 …
 int result = count_collisions(
 N, size, coordx, coordy, coordz
);
 …
}

Low-level oriented
arrangement of data:
(sphere-collisions-low-level.zip)

Q: Can we also use
“float size[N];” etc.?

The task was to arrange the data in a more
object-oriented way, using a structure.

In this way, all data on the same sphere
should be stored in the same object.

528th September 2022INF205

Tutorial problem: Structure

struct Sphere {
 float size = 0.0;
 float coords[3] = {0.0, 0.0, 0.0};
};

int count_collisions(int N, Sphere spheres[]);

int main() {
 …
 cin >> N;
 Sphere* spheres = new Sphere[N]();
 …
 int result = count_collisions(N, spheres);
 …
}

int count_collisions(
 int N, float size[], float coordx[],
 float coordy[], float coordz[]
);

int main() {
 …
 cin >> N;
 float* size = new float[N]();
 float* coordx = new float[N]();
 float* coordy = new float[N]();
 float* coordz = new float[N]();
 …
 int result = count_collisions(
 N, size, coordx, coordy, coordz
);
 …
}

Object-oriented
arrangement of data:
(sphere-collisions-struct.zip)

Low-level oriented
arrangement of data:
(sphere-collisions-low-level.zip)

Q: Can we also use
“Sphere spheres[N];”?

628th September 2022INF205

Tutorial problem: Pass by reference

bool is_prime(int64_t* n) {
 if((*n%2 == 0) || (*n%3 == 0)) {
 delete n; return false;
 }

 for(int64_t i = 5; *n >= i*i; i += 6) {
 if((*n % i == 0) || (*n % (i+2) == 0)) {
 delete n; return false;
 }
 }

 return true;
}

double time_measurement(int64_t n) {
 auto t0 = high_resolution_clock::now();
 for(int i = 0; i < num_tests; i++) {
 is_prime(new int64_t{n});
 }
 auto t1 = high_resolution_clock::now();

 return duration_cast<nanoseconds>(t1-t0).count()
 / (double)num_tests;
}

int main() {
 for(int64_t x = xmin; xmax >= x; x += xstep)
 cout << x << "\t" << time_measurement(x) << "\n";
}

Let us collect opinions from the groups’ discussions on the “memory leak”
code: In what ways was it poorly designed – what would have been better?

INF205 28th September 2022

1 C++ basics

1.12 On pass-by-reference

828th September 2022INF205

Pass by value vs. pass by reference

Advantages of passing a function argument by value:

– Memory management is done at the stack level, by the compiler. The
programmer can relax and does not need to deal with this aspect.

– The stack can be optimized at compile time, and it is faster to access
memory on the stack because there is no need to look up an address.

– Variable lifetime coincides with the runtime of functions that use them.
– The value of the variable in the calling function is protected from any

intransparent changes by the called function.
– This makes the code more modular. It is easier to understand and even

verify the function. (The point of using local instead of global variables.)

Advantages of passing a function argument by reference:

There must be a reason there is a second mechanism, pass-by-reference. Even
Python uses it when dealing with objects. Discussion: What is the advantage?

928th September 2022INF205

Pass a reference vs. pass a pointer

Advantages of pass-by-reference using a reference:
– Some memory-related errors become less likely if we only work with

references; e.g., errors from applying incorrect pointer arithmetics.
– Looks more like Java, Python, and other modern high-level languages.

Advantages of pass-by-reference using a pointer:
– It is visible to the programmer at all times that we deal with memory.
– Looks more like C, and it is closer to the object-code representation.

Pointers and references are two equivalent notations for the same techniques.

void some_function(int& parameter) {
 …
 // convert the reference to a pointer
 int* y = ¶meter;
 // now we can work with pointer y
 …
}

void some_function(int* parameter) {
 …
 // convert the pointer to a reference
 int& x = *parameter;
 // now we can work with reference x
 …
}

1028th September 2022INF205

“const” parameters of a function
If we pass an argument by reference but
do not intend to modify it, the parameter
should be declared as const. Such as:

void do_something(const Sphere& s);
void do_something(const Sphere* s);
void do_something(const Sphere s[]);

Const variables may only be passed by
reference if the parameter is also const.

Examples:
1) The “const-array” code does

not compile. How do we fix it?
2) Let us look at the “sphere-

collisions-struct” code. It is
advisable to say that something
is constant wherever possible.
Where can we do it?

int second_largest_of(int N, int x[]) {
 int largest = numeric_limits<int>::min();
 int second_largest = numeric_limits<int>::min();

 for(int i = 0; i < N; i++)
 if(x[i] > largest) {
 second_largest = largest;
 largest = x[i];
 }
 else if(x[i] > second_largest)
 second_largest = x[i];
 return second_largest;
}

int main() {
 constexpr int fixed_array_size = 5;
 const int x[fixed_array_size] = {4, 0, 6, 5, 2};
 cout << second_largest_of(fixed_array_size, x);
}

const-array.cpp: What is the mistake?

1128th September 2022INF205

Pass by reference and “const”

1) If you can pass by value, that is always to be preferred!
2) But pass large objects by reference; otherwise all data must be copied.
3) If you pass an argument by reference, the compiler assumes that the

function will modify it. Write “const” whenever that’s not the case.

An array is a pointer. Therefore it is impossible to pass an array by value. If you
don’t intend the function to write to the array, it should be a const parameter.

Pay attention to C++ syntax for combining pointers with “const”. Illustration:

int v = 3;
const int x[3] = {1, v, v*v}; // x is an array of constant integers
const int* y = &x[1]; // y is a pointer to a constant integer
int* const pv = &v; // pv will forever point to address of v
const int* const z = &x[2]; // z will forever point to address of x[2]

(*pv)++; // this is legal, we may change *pv, just not pv
y++; // this is legal, we may change y, just not *y

INF205 28th September 2022

1 C++ basics

1.12 On pass-by-reference
1.13 Classes

1328th September 2022INF205

C++ as an object-oriented language

C++ can be used in many ways, including old-fashioned procedural
programming like in C. But C++ is also a true object-oriented programming
language. Its functionality in that respect goes beyond that of Python.

By convention, if we use only the features that we have seen before, we will
use the struct keyword, but we tend to define a class when using any of these:

– Members that are private, i.e., they can only be accessed from inside
the class. Both properties (variables of an object) and methods
(functions of an object) can be either public or private.

– Class hierarchies with inheritance, where we define a more generic
superclass (e.g., Shape) and one or several more specific subclasses
that are derived from it (e.g., Sphere and Cuboid).

– Specialized functionality for constructing, copying, or deleting objects.

1428th September 2022INF205

Methods: Recapitulation
struct BookIndex
{
 int chapter = 1;
 int section = 1;
 int page = 1;

 int next_chapter();

 int next_section();

 int next_page();

 void out();
}

int BookIndex::next_chapter() {
 chapter++;
 section = 1;
 page++;
 return chapter;
}

int BookIndex::next_section() {
 section++;
 return section;
}

int BookIndex::next_page() {
 page++;
 return page;
}

void BookIndex::out() {
 cout << "Section " << chapter << "."
 << section << ", p. " << page << "\n";
}

A method is a function that belongs
to an object. Methods are declared
in the class definition (header file)
and usually defined in the code file.

1528th September 2022INF205

The “this” pointer and “const” methods
struct BookIndex
{
 int chapter = 1;
 int section = 1;
 int page = 1;

 int next_chapter();

 int next_section();

 int next_page();

 void out() const;
}

int BookIndex::next_chapter() {
 this->chapter++;
 this->section = 1;
 this->page++;
 return this->chapter;
}

int BookIndex::next_section() {
 this->section++;
 return this->section;
}

int BookIndex::next_page() {
 this->page++;
 return this->page;
}

void BookIndex::out() const {
 cout << "Section " << this->chapter
 << "." << this->section
 << ", p. " << this->page << "\n";
}

The pointer this is analogous to the object reference
“self” from Python. It points to the object itself.

If a method is declared as const, it cannot change
any of the object’s own properties.

1628th September 2022INF205

Private and public members of a class

The private and public status of class members (i.e., properties and methods)
is stated in the class definition, where properties and methods are declared:

class ExampleClass {
public:
 TypeA getPropertyA() const {return this->propertyA;}
 TypeB* getPropertyB() const {return this->propertyB;}
 void setPropertyA(TypeA a) {this->propertyA = a;}
 void setPropertyA(TypeB* b) {this->propertyB = b;}
 void do_something();

private:
 TypeA propertyA;
 TypeB* propertyB;

 void helper_method();
};

Only the public part of
the class definition is the
interface accessible to
code outside the scope of
the class.

Typical object-oriented design makes all properties
(objects’ variables) private. They are read using public
“get” methods and modified using public “set” methods.

Methods that are only called by other methods of the same
class, but not from outside, are also declared to be private.

1728th September 2022INF205

Class definition: Common techniques

Class definitions are done in header files. Method definitions are mostly done
in the code file. In many cases, each class has its own header and code file
(e.g., example-class.h, example-class.cpp), but see also Core Guidelines NR.4.

class ExampleClass {
public:
 TypeA getPropertyA() const {return this->propertyA;}
 TypeB* getPropertyB() const {return this->propertyB;}
 void setPropertyA(TypeA a) {this->propertyA = a;}
 void setPropertyA(TypeB* b) {this->propertyB = b;}
 void do_something();

private:
 TypeA propertyA;
 TypeB* propertyB;

 void helper_method();
};

Very simple methods can
be in the header file. That
saves you lines of code.

But it also helps the
compiler: They could
become “inline” methods.
The compiler then
replaces the method call
by the method definition.

For propertyA, we are using an object or data item.
For propertyB, we are using a pointer.
What could be the reasons behind such choices?

1828th September 2022INF205

Example: Making properties private

Task: Develop the “struct
BookIndex” example into a class
where the properties are private.

1) Use “class” instead of “struct”.
2) Split class definition into a public
part and a private part.
3) Introduce “get” and “set”
methods to access the properties.
4) Adjust the remaining code so
that direct access to private
properties is replaced with calling
the “get” and “set” methods.

class BookIndex
{
public:
 int get_chapter() const;
 …
 void set_chapter(int c);
 …

private:
 int chapter = 1;
 …
};

int main()
{
 …
 BookIndex idx;
 idx.set_chapter(1);
 idx.set_section(8);
 idx.set_page(8);
 …
}

1928th September 2022INF205

Constructors and destructors
Constructor: A method that is called when an object is allocated.
Destructor: A method that is (implicitly) called when an object is deallocated.

They are not mandatory (as we have seen); use them if you need to specify
some functionality for this purpose. Most typically:

– Provide a constructor if you want to give the user control over how the
private properties of an object are initialized.

– There are also special “copy constructors” and “move constructors”.
(Not to be discussed right now.)

– Provide a destructor if your memory management strategy requires it;
there might be properties stored as pointers that need to be deleted.

class BookIndex {
public:
 BookIndex(int c, int s, int p);
 ~BookIndex();
 …
};

BookIndex::BookIndex(int c, int s, int p) {
 this->chapter = c; this->section = s; this->page = p;
}
BookIndex::~BookIndex() {
 cout << "Deleting a BookIndex object.\n";
}

INF205 28th September 2022

1 C++ basics

1.12 On pass-by-reference
1.13 Classes
1.14 Inheritance

2128th September 2022INF205

Inheritance and virtual methods

Classes can stand in a hierarchical relationship: A more general superclass
and its more specific subclass (also, “derived class” or “child”).

An object of the subclass then (automatically) is also an object of the
superclass; it has all the members defined in its class definition, but also
inherits the members defined for the superclass, to which it also belongs.

LiteratureIndex

BookIndex JournalArticleIndex

class LiteratureIndex {
public:
 virtual int next_page();
 …
private:
 int year = 0;
 …
};

class JournalArticleIndex: public LiteratureIndex {
public:
 int next_page();
 …
private:
 int volume = 0;
 …
};

JournalArticleIndex can override the
next_page method definition from
its superclass, because it is virtual.

It has the property volume, but it
also inherits the property year.

INF205 28th September 2022

1 C++ basics

1.12 On pass-by-reference
1.13 Classes
1.14 Inheritance
1.15 Streams

2328th September 2022INF205

Streams: An example of inheritance

An input stream (istream) can be
used for output with the >> operator.

An output stream (ostream) can be
used for output with the << operator.

ios_base

ios

istream ostream

ofstreamifstream iostream

stringstreamfstream

ostringstreamistringstream

cin cout
cerr
clog

>> <<

Consequently, since an
iostream is both an istream
and an ostream, it must
provide both operators.

2428th September 2022INF205

I/O with the stream as a parameter

We often develop code where we expect to write to cout, or read from cin.

However, the code is more reusable if we include a stream object among the
function parameters, and then pass cin/cout or something else (such as a
stream that accesses a file) as appropriate. If used for reading, the parameter
type should be istream (provides >>); for writing, it should be ostream (<<).

// write to *target
void BookIndex::out(std::ostream* target) const
{
 *target << "Section " << this->chapter

<< "." << this->section
 << ", p. "<< this->page << "\n";

}

Code from the “inheritance” example:

int main() {
 …
 std::cout << "\nBookIndex example:\n";
 litindex::BookIndex idx(1, 11, 24);
 idx.out(&std::cout); // print status
 …
}

2528th September 2022INF205

File input/output

To read from a file, open an ifstream, to write to a file, open an ofstream.

Example code “read-from-file” takes the name of a data file as a command line
argument, passed to int main(int argc, char** argv) as argv[1].

int main(int argc, char** argv)
{
 ...
 char* file_name = argv[1];
 ...
 ifstream read_from_file(file_name);
 if(!read_from_file)
 {
 cerr << "Error! " << file_name << " cannot be read.\n";
 return EXIT_FAILURE;
 }

 int N = 0; // N will be the number of spheres
 read_from_file >> N; // input number of spheres

 // array containing the spheres; allocated on the heap
 Sphere* spheres = read_sphere_data(N, &read_from_file);

 ...
 delete[] spheres;
}

Sphere* read_sphere_data(int N, istream* source)
{
 /*
 * array containing all the spheres
 */
 Sphere* spheres = new Sphere[N]();

 /*
 * read all the data from standard input
 */
 for(int i = 0; i < N; i++)
 {
 *source >> spheres[i].size;
 for(int d = 0; d < 3; d++)
 *source >> spheres[i].coords[d];
 }
 return spheres;
}

INF205 28th September 2022

Conclusion

2728th September 2022INF205

Glossary building and group formation

Glossary building:
– The glossary is up and continuously growing. We will continue to

collect terms, including at the end of lectures if there is time.
– (If we have time: Let us reflect on the key concepts from this lecture.)

Formation of programming project groups:
– Groups should ideally have three members; two are also acceptable.
– If you do not have a project group, you cannot pass INF205!

https://nmbu.instructure.com/courses/8427/groups#tab-5215

Self sign-up by
12th October
(lecture time)

Deadline:

INF205 28th September 2022

INF205
Resource-efficient programming

1 C++ basics

1.12 On pass-by-reference
1.13 Classes
1.14 Inheritance
1.15 Streams

