
INF205 5th October 2022

INF205
Resource-efficient programming

2 Data structures

2.1 Strings
2.2 Dynamic data structures
2.3 Standard template library
2.4 Linked lists

25th October 2022INF205

Use of the “const” keyword
1. Variables are declared as const if we do
not plan to modify them after initialization.

2. We declare pointers to const (of type T)
as const T*. (References as const T&.)

3. The above is used for pass-by-reference:

int do_something(const T& s);
int do_something(const T* s);

const variables may only be passed by
reference if the parameter is also const.

4. Read-only method: T::method() const.

Examples:
1) “const-array” bug, see right.
2) Next let us look at the “sphere-

collisions-struct” code. Where
is it possible to write “const”?

int second_largest_of(int N, const int x[]) {
 int largest = numeric_limits<int>::min();
 int second_largest = numeric_limits<int>::min();

 for(int i = 0; i < N; i++)
 if(x[i] > largest) {
 second_largest = largest;
 largest = x[i];
 }
 else if(x[i] > second_largest)
 second_largest = x[i];
 return second_largest;
}

int main() {
 constexpr int fixed_array_size = 5;
 const int x[fixed_array_size] = {4, 0, 6, 5, 2};
 cout << second_largest_of(fixed_array_size, x);
}

const-array.cpp – mistake fixed as follows:

35th October 2022INF205

From structures to classes

u39 tutorial problem 2:
Develop the “Sphere” (collisions)
example into a class where the
properties are private.

1) Use “class” instead of “struct”.

2) Split class definition into a public
part and a private part.

3) Introduce “get” and “set”
methods to access the properties.

4) Adjust the remaining code so
that direct access to private
properties is replaced with calling
the “get” and “set” methods.

class Sphere
{
public:
 float get_size() const { return this->size; }
 float get_coordinate(int axis) const;

 void set_size(float in_size);
 void set_coordinate(int axis, float in_coord);

 // is there a collision between “this” and “other”?
 bool check_collision(const Sphere* other) const;

private:
 float size = 0.0;
 float coords[3] = {0.0, 0.0, 0.0};
};

…
spheres[i].set_size(size);
…

45th October 2022INF205

Virtual methods and abstract classes

LiteratureIndex

BookIndex JournalArticleIndex

class LiteratureIndex {
public:
 virtual int next_page();
 …
private:
 int year = 0;
 …
};

class JournalArticleIndex: public LiteratureIndex {
public:
 int override next_page();
 …
private:
 int volume = 0;
 …
};

JournalArticleIndex can override the
next_page method definition from
its superclass, because it is virtual.

It has the property volume, but it
also inherits the property year.

u39 tutorial problem 3 used the keyword “virtual” for method declarations in
the superclass (parent) to specify that they are overridden in all cases if an
object instantiates the subclass (child, derived class).

This can be made more explicit by the (optional) keyword “override”, as below:

55th October 2022INF205

Virtual methods and abstract classes

u40 tutorial problem 2 has an abstract class at the top of a class hierarchy.

Such a class has a pure virtual method that is only declared, but not defined.
The declaration uses the construction “virtual … method(…) = 0;”.

(See code example “sequential-data-structures”.)
Sequence

SinglyLinkedListDynamicArray DoublyLinkedList

 class Sequence
 {
 public:
 virtual bool empty() const = 0; // whether sequence is empty
 virtual size_t size() const = 0; // size (number of items)

 virtual int& front() = 0; // return reference to first item
 virtual int& back() = 0; // return reference to final item

 virtual int& at(int i) = 0; // reference to item at index i

 ...
 };

A class is concrete (i.e., not
abstract) if it does not have
any pure virtual methods.

If it has an abstract
superclass, it must override
(define) all its pure virtual
method declarations.

INF205 5th October 2022

2 Data structures

2.1 Strings

75th October 2022INF205

Strings in C and in C++

The C++ language only prescribes what functionalities a std::string should
provide, not how it is realized at the memory level, which is up to the compiler.

Most implementations remain close to that from the C language, where
character arrays terminated by the null character '\0' are employed. (If you
want to enforce this, you can also still use all the C style constructs explicitly.)

Also to ensure backwards compatibility with C, string literals between double
quotation marks such as "INF205" are of the type const char* (not std::string).
Between single quotation marks there is always a char, such as char x = 'a';

'I' 'N' 'F' '2' '0' '5' '\0'

string s = "INF205"; or char s[] = "INF205"; produce the following in memory:

73 78 70 50 48 53 0

85th October 2022INF205

Strings in C and in C++

To remember about C++ strings as opposed to C strings: Even if they are
usually realized as arrays at the memory level, they are not arrays to the
programmer. As a consequence, it is possible to pass C++ strings by value.

C strings, however, can never be passed by value because they are arrays.

void increment_at(int p, char* str) {
 str[p]++;
}

int main()
{
 char c_style_str[] = "INF205";
 increment_at(5, c_style_str);
 cout << c_style_str << "\n";
}

void increment_at(int p, string str) {
 str[p]++;
}

int main()
{
 string cpp_style_str = "INF205";
 increment_at(5, cpp_style_str);
 cout << cpp_style_str << "\n";
}

95th October 2022INF205

I/O operator overloading

See example code io-operator-overloading for the following.

The overloaded operators must be positioned outside a namespace.
(Like the original << and >> operators.)

Assume that for some class C, we have (as discussed before) defined methods
that write content to a stream, or that analogously read from a stream.

void C::out(ostream* target) const {
 *target << … ;
}

void C::in(istream* source) {
 *source >> … ;
}

ostream& operator<<(
 ostream& str, const C& x
) const {
 x.out(&str);
 return str;
}

istream& operator>>(istream& str, C& x)
{
 x.in(&str);
 return str;
}

You can convert this to overloaded I/O operator definitions:

Now you can use the operator <<
and the operator >> on objects of
type C just like for numbers, etc.

105th October 2022INF205

String streams

See example code io-operator-overloading for the following.

ios_base

ios

istream ostream

ofstreamifstream iostream

stringstreamfstream

ostringstreamistringstream

>> <<

String streams have a string representation,
accessible through the method str().

If it is an ostringstream, you can write to it
using operator <<, if it is an istringstream,
you can read from it using operator >>.

With a stringstream,
you can do both.
(FIFO: First-in, first-out.)

INF205 5th October 2022

2 Data structures

2.1 Strings
2.2 Dynamic data structures

125th October 2022INF205

C/C++ arrays (static arrays)

An array contains a sequence of elements of the same type, arranged
contiguously in memory. This supports fast access using pointer arithmetics.
Once created, the size of a C/C++ array is fixed; we cannot append elements.

In C/C++, the type of an array such as int[] is the same as the corresponding
pointer type int*, i.e., the array actually is a pointer. Its value is an address at
which an integer is stored, namely, the memory address of the first element.

This is highly efficient since when x[i] is accessed, the compiler transforms this
into accessing the memory address x + sizeof(int) * i.

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &x[0] x + 3 = &x[3] x + 6 = &x[6]

135th October 2022INF205

Lists in Python (dynamic arrays)

Conventional arrays are static data structures. Their size in memory is constant,
and memory needs to be allocated only once, e.g., at declaration time. (Details
depend on programming language, compiler, flags/optimization level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future. When the capacity of the dynamic array is
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12

x[0] x[1] x[2] x[3]

4

x = [34, 1, 7, 12]

Note: Reserve memory capacity is allocated.
Items are arranged contiguously in memory.

logical
size is 4

free free

capacity is 6
in Python:

6

capacity is 6

145th October 2022INF205

Dynamic arrays: Efficiency analysis

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

7

x[6]

7 free free

x + 3 = &x[3]

logical
size is 7

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

An array contains a sequence of elements of the same type, arranged
contiguously in memory. The compiler, and also the programmer, can use
pointer arithmetics for converting indices to addresses.

9

capacity is 9

155th October 2022INF205

Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array? O(1) at the end, O(n) elsewhere.
All the elements with greater indices need to be shifted.

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

7

x[6]

7 free free

x + 3 = &x[3]

logical
size is 7

9

capacity is 9

165th October 2022INF205

Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array: O(1) at the end, O(n) elsewhere.
All the elements with greater indices need to be shifted.

– Extending the array by one element? O(1) at the end, if there is capacity.
O(n) elsewhere, or if the capacity of the dynamic array is exhausted.

34 7 12 3 4

x[0] x[1]

7 free freefree

x[2] x[3] x[4] x[5]

appending an element
will take constant time,

as long as there is capacity
6

logical
size is 6

9

capacity is 9

175th October 2022INF205

Example implementation

The sequential-data-structures archive contains an example implementation.

Interface (abstract class) from Sequence:

– bool empty() const;
– size_t size() const;

– int& front();
– int& back();
– int& at(int i);

– void push_front(const int& in);
– void push_back(const int& in);
– void push(const int& in);
– void insert_at(int idx, const int& in);

– void pop_front();
– void pop_back();
– void pop(const int& in);
– void erase_at(int idx);
– void clear();

class DynamicArray: public Sequence {
public: … // implement all the interface from Sequence
 ~DynamicArray() { this->clear(); }

private:
 int* values = nullptr;

 size_t logical_size = 0; // how many data items are we storing?
 size_t capacity = 0; // how much memory did we allocate?

 // shift to static array with increased/decreased capacity
 void resize(size_t new_capacity);
};

Capacity takes values 0, 1, 2, 4, 8, 16, …

For several tasks we need to copy data that
are contiguous in memory. For this, we use
std::copy(init, end, target) from <algorithm>.

185th October 2022INF205

STL vector: Dynamic array in C++

The standard template library (STL) provides typical container data structures.
They are templates: They can contain any type of fundamental data items or
objects as their elements. The element type is specified in angular brackets.

A dynamic array can be declared (with “#include <vector>”) as an object of the
parameterized class vector<T>, e.g., “vector<int> data = {1, 2, 3, 4};”.

1

data[0]

freefree

4

logical
size is 4

data[1] data[2] data[3]

1 1 1

Functionalities of the STL
vector include the ones
from our “Sequence”
interface, but also explicit
addressing with “[index]”
notation and many more.

6

capacity is 6

195th October 2022INF205

Symmetric dynamic array data structure

The dynamic array data structure that we introduced is asymmetric. Insertions
and deletions at the tail are fast if there is free capacity at the tail. At the head
end, however, there is never any free capacity.

If needed, this can be improved upon by allocating free capacity at both ends.

A symmetric dynamic array can be declared (with “#include <deque>”) as a
“double ended queue” object deque<T>, e.g., “deque<int> data = {1, 2, 3, 4};”.

1

data[0]

freefree

4

data[1] data[2] data[3]

1 1 1freefree

data 8
Remark: The actual STL deque implementation can
become more complicated than this. There is no
requirement for all items to be stored contiguously
in memory at all times. (As opposed to vector.)

INF205 5th October 2022

2 Data structures

2.1 Strings
2.2 Dynamic data structures
2.3 Standard template library

215th October 2022INF205

The STL containers

The standard template library (STL) provides typical container data structures.
They are templates: They can contain any type of fundamental data items or
objects as their elements. The element type is specified in angular brackets.

// declare a list of int values
std::list<int> my_list();

// declare a list of BookIndex objects
std::list<BookIndex> my_list();

– vector<T> is a dynamic array for type T elements. (Free capacity: Tail only.)
– deque<T> (“double ended queue”): Dynamic array with capacity both ends.

– forward_list<T> is a singly linked list data structure for type T.
– list<T> is a doubly linked list data structure for type T.

– set<T> is a container where each key (element) occurs only (at most) once.
– map<T, V> contains key-value pairs, which each key occurring at most once.

– array<T, n> is a static array for type T, with array size n, similar to T[] arrays.

INF205 5th October 2022

2 Data structures

2.1 Strings
2.2 Dynamic data structures
2.3 Standard template library
2.4 Linked lists

235th October 2022INF205

Example implementation

Singly linked list of integers as in the sequential-data-structures example:

Interface (abstract class) from Sequence:

– bool empty() const;
– size_t size() const;

– int& front();
– int& back();
– int& at(int i);

– void push_front(const int& in);
– void push_back(const int& in);
– void push(const int& in);
– void insert_at(int idx, const int& in);

– void pop_front();
– void pop_back();
– void pop(const int& in);
– void erase_at(int idx);
– void clear();

class SinglyLinkedList: public Sequence {
public: … // implement all the interface from Sequence
 ~SinglyLinkedList() { this->clear(); }

private:
 SinglyLinkedListNode* head = nullptr;
 SinglyLinkedListNode* tail = nullptr;
};

class SinglyLinkedListNode {
public:
 int& get_item() { return this->item; }
 SinglyLinkedListNode* get_next() const { return this->next; }
 void set_item(int in_item) { this->item = in_item; }

private:
 int item = 0;
 SinglyLinkedListNode* next = nullptr;
 void set_next(SinglyLinkedListNode* in) { this->next = in; }
 friend class SinglyLinkedList;
};

245th October 2022INF205

Singly linked list

34

item next

1

item next

7

item next

head tail

nullptr

12

item next

Linked lists are dynamic data structures. Their elements are not contiguous in
memory. Therefore, pointer arithmetics and increments (p++) cannot be used.
Instead, the linked list consists of nodes.

Example task: Insert 12 after node x, to which we already have a reference.

255th October 2022INF205

Doubly linked list

1

item nextprev

12

item nextprev

7

item nextprev

head tail

nullptr

nullptr

In a doubly linked list, each node also contains a reference (or pointer) to the
previous node. This facilitates traversal in both directions and inserting a new
data item before any given node (rather than only after it), all in constant time.

Singly linked lists require two variables per data item (item and next).
Doubly linked lists require three variables per data item (prev, item, and next).

265th October 2022INF205

Summary: Efficiency analysis
– Read/write access to a data item at position k

• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case
• For a doubly linked list, O(min(k, n – k)), which is still effectively O(n)

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists

– Deleting a data item at position k
• For a dynamic array, O(1) at the end, O(n – k) in general
• For a singly linked list, O(1) at the head, or if we have a reference to the

element at position k–1; otherwise, in general, O(k)
• For a doubly linked list, O(1) at the head or tail, or if we have a

reference to that region of the list; in general, O(min(k, n – k))

Remark: For linked lists, insertion/deletion as such takes constant time, once
the node has been localized. However, getting to the node can take O(n) time.

275th October 2022INF205

Summary: Efficiency analysis
– Read/write access to a data item at position k

• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case
• For a doubly linked list, O(min(k, n – k)), which is still effectively O(n)

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists

– Inserting an additional data item at position k
• For a dynamic array, O(n) in the worst case, i.e., whenever the capacity

is exhausted; with free capacity, O(1) at the end, O(n – k) elsewhere
• For a singly linked list, O(1) at the head or tail, or if we have a reference

to the element at position k–1; Otherwise, in general, O(k)
• For a doubly linked list, O(1) at the head or tail, or if we have a

reference to that region of the list; in general, O(min(k, n – k))

Remark: For linked lists, insertion/deletion as such takes constant time, once
the node has been localized. However, getting to the node can take O(n) time.

INF205 5th October 2022

Conclusion

INF205 5th October 2022

INF205
Resource-efficient programming

2 Data structures

2.1 Strings
2.2 Dynamic data structures
2.3 Standard template library
2.4 Linked lists

