
INF205 12th October 2022

INF205
Resource-efficient programming

2 Data structures

2.5 Templates
2.6 Graph data structures
2.7 Tailored containers

212th October 2022INF205

From singly linked to doubly linked list

Thanks to Hanna Lye Moum and Nora Mikarlsen for fixing a bug in the original version.

// add an item at the beginning of the list
void SinglyLinkedList::push_front(
 const int& pushed_item
) {
 SinglyLinkedListNode* new_node

 = new SinglyLinkedListNode;
 new_node->set_item(pushed_item);

 if(this->empty()) this->tail = new_node;
 else
 new_node->set_next(this->head);

 this->head = new_node;
}

// add an item at the beginning of the list
void DoublyLinkedList::push_front(
 const int& pushed_item
) {
 DoublyLinkedListNode* new_node

 = new DoublyLinkedListNode;
 new_node->set_item(pushed_item);

 if(this->empty()) this->tail = new_node;
 else {
 new_node->set_next(this->head);
 this->head->set_prev(new_node);
 }
 this->head = new_node;
}

For every link forward (next),
there is now also a link
backward (prev).

// see example code sequence-performance

head tail

…

…

nullptrnullptr
pushed
_item

head tail

…

…

pushed
_item

312th October 2022INF205

Sequential data structures: Operations

– Read/write access to a data item at position k
• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case
• For a doubly linked list, O(min(k, n – k)), which is still effectively O(n)

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists

– Inserting an additional data item at position k
• For a dynamic array, O(n) in the worst case, i.e., whenever the capacity is exhausted;

with free capacity, O(1) at the end, O(n – k) elsewhere
• For a singly linked list, O(1) at the head or tail, or if we have a reference to the

element at position k–1; Otherwise, in general, O(k)
• For a doubly linked list, O(1) at the head or tail, or if we have a reference to that

region of the list; in general, O(min(k, n – k))

Remark: For linked lists, insertion/deletion as such takes constant time, once
the node has been localized. However, getting to the node can take O(n) time.

412th October 2022INF205

Application: Stacks and queues

– Stacks function by the principle “last in, first out” (LIFO)

• Can be implemented using a singly linked list:
– Attach (push) new elements at the head of the list only
– Detach (pop) elements from the head of the list only

• Can be implemented using a dynamic array:
– Attach (push) new elements at the end of the array only
– Detach (pop) elements from the end of the array only

– Queues function by the principle “first in, first out” (FIFO)

• Can be implemented using a singly linked list (with a tail reference):
– Attach (push) new elements at the tail of the list only
– Detach (pop) elements from the head of the list only

All these operations can be carried out in constant time;
in case of the push operation for the dynamic array, subject to free capacity.

INF205 12th October 2022

2 Data structures

2.5 Templates

612th October 2022INF205

C++ standard template library

The standard template library (STL) provides typical container data structures.
They are templates: They can contain any type of fundamental data items or
objects as their elements. The element type is specified in angular brackets.

// declare a list of int values
std::list<int> my_list();

// declare a list of BookIndex objects
std::list<BookIndex> my_list();

– vector<T> is a dynamic array for type T elements. (Free capacity: Tail only.)
– deque<T> (“double ended queue”): Dynamic array with capacity both ends.

– forward_list<T> is a singly linked list data structure for type T.
– list<T> is a doubly linked list data structure for type T.

– set<T> is a container where each key (element) occurs only (at most) once.
– map<T, V> contains key-value pairs, which each key occurring at most once.
– multimap<T, V> contains key-value pairs; keys may occur multiple times.

– array<T, n> is a static array for type T, with array size n, similar to T[] arrays.

712th October 2022INF205

Parameterized class definitions

We have already seen the STL templates: The same container implementation
can be used for different types of contained objects, such as list<float> and
list<double>. We can define our own class templates in this way:

template<typename T> class SinglyLinkedListNode
{
public:
 T& get_item() { return this->item; }
 SinglyLinkedListNode<T>* get_next() const { return this->next; }
 void set_item(T in_item) { this->item = in_item; }

private:
 T item;
 SinglyLinkedListNode<T>* next = nullptr;
 void set_next(SinglyLinkedListNode<T>* in_next) { this->next = in_next; }
};

attention with initializations

attention with split between
header and object file; think about

“what the compiler will do”

While there is only one source code for each template, object code is normally
generated separately for each concrete version of it. (But not for the template!)

(example code list-template)

812th October 2022INF205

Templates for functions and methods

The same sort of syntax applies for parameterized function and method
declarations and definitions. This includes cases with multiple parameters.

template<typename T>
 void SinglyLinkedList<T>::push_front(
 const T& pushed_item
) {
 SinglyLinkedListNode<T>* new_node

 = new SinglyLinkedListNode<T>;
 new_node->set_item(pushed_item);

 if(this->empty()) this->tail = new_node;
 else new_node->set_next(this->head);
 this->head = new_node;
}

template<typename SeqnT, typename ElmnT>
 void test_sequence(
 SeqnT* sqn, int n, int m,
 ElmnT a, ElmnT b, ostream* os
) {
 …
}

template<typename SeqnT, typename ElmnT>
 float test_with_time_measurement(
 SeqnT* sqn, int iterations, ElmnT a, ElmnT b
) {
 int sequence_length = 1000001;
 int deletions = 10;
 test_sequence(sqn, 100000, 10, a, b, &cout);
}

Code above:
From list-template example.

912th October 2022INF205

Case distinctions in templates

The standard library header <type_traits> includes parameterized flags that
can be used to make case distinctions, e.g.,

– is_arithmetic<T>::value, is_signed<T>::value, etc.;
– is_pointer<T>::value, is_class<T>::value, is_array<T>::value, etc.;
– is_same<T, S>::value, to check whether T and S are the same type.

In list-template, solutions for initializing the property “T item” would include:

T item = T();

template<typename T>
 const T initial_value = T();
…
T item = initial_value<T>;

 SinglyLinkedListNode<T>() {
 if constexpr(is_arithmetic<T>::value) this->item = 3;
 else if constexpr(is_pointer<T>::value) this->item == nullptr;
 else if constexpr(is_same<T, string>::value) this->item = "uninitialized";
 else this->item = T();
 }

Only with the solution on the right we can make more high-level design
distinctions depending on the nature of the type T used for parameterizing.

1012th October 2022INF205

Generic programming

Extensive reliance on templates is also called generic programming (GP),
which can be seen as its own programming paradigm, building on object-
oriented programming but going beyond it; “by implementing programs
generically, a single implementation can be used for many different types”.1

We have seen: C++ supports such design by (1) inheritance and (2) templates.

From C++20 onward, concepts are introduced as GP language constructs.
They describe requirements for a type (e.g., it must provide an operator such
as “<<”, a particular method, or we must be able to add it to an integer, …).

// old style: does not make clear what
// we expect from the class SeqnT
template<typename SeqnT, …>
 void test_sequence(SeqnT* sqn, …)
{ … }

// new style, where we would define Sequence
// as a concept (and not as an abstract class)
template<Sequence SeqnT, …>
 void test_sequence(SeqnT* sqn, …)
{ … }

1L. Escot, J. Cockx, Proc. ACM Prog. Lang. 6: 625–649, doi:10.1145/3547644, 2022.

INF205 12th October 2022

2 Data structures

2.5 Templates
2.6 Graph data structures

1212th October 2022INF205

Non-sequential containers
Sequential data structures arrange their items in a
linear shape. Sometimes that is not the best solution,
or it is not appropriate at all. Why?

The most frequent container data structures with a
different, non-sequential shape are graphs, including
the important special case of tree data structures.

A graph G = (V, E) is defined by its nodes V, which are
also called vertices, and edges E that connect one
node to another. Nodes and edges may also be
labelled in order to give the graph a meaning.

Graphs can be used to represent relations
between objects, such as distances on a
map, or as a knowledge graph.

Trees are often used as sorted data
structures, for efficiency reasons.

cognitive step σ by
which a obtains φ

Semiosis

researcher a

data δ that allow a
to conclude φ

DigitalArticulation

Interlocutor

KnowledgeClaiminterpretant φ, an
answer to question q

research question q Question

B
.

(isAssertedBy)

(isAbout)

Ë

Pι
..

(isInterpreterIn)

R
^

R
^

q (hasSubjectMatter)

E
.

E
…

1312th October 2022INF205

Tree data structures

Trees are a special kind of graph; or graphs are a generalization of trees:

tree (a kind of graph)

unique
root

Definition (“tree”; in the literature, also: “out-tree” or “rooted tree”)

A tree is a graph with a root and a unique path from the root to each node.

unique path
to node

4

6

7

nullptr

nullptr

nullptr

nullptr

nullptr

5

nullptr nullptr

nullptr

8

nullptr nullptr

0

1

2

3

a binary search tree

1412th October 2022INF205

Adjacency lists: Singly linked

0

label next

adjacency
list

1

2

3

node

empty
list

empty
list

list with pointers (or references)
to node 4 and node 5

(list of nodes to which
there is an edge) 0

1

2

3

4

5

7

8

6

graph with
labelled nodes

9

In a graph, one node can be connected to multiple other nodes. An adjacency
list (with various possible implementations) can be used to manage these links.

1512th October 2022INF205

Adjacency lists: Doubly linked

Instead of singly linked data structures, doubly linked data structures can also
be used; e.g., with an additional adjacency list pointing to predecessor nodes.

0

1

2

3

4

5

7

8

6

0

label next

9

adjacency
lists

prev

1

2

3
7

9

graph with
labelled nodes

node

1612th October 2022INF205

Incidence lists

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b

b

d

graph with labelled
nodes and edges

3

label outin

9

c
a

label

label

source

target

target

source

edge

edge

node 5

node 4

node 0

edge

source

label

a

b

a

target

An incidence list is a list of edges to which a node is incident. For adjacency
lists or incidence lists, various data structures can be used, e.g., dynamic arrays.

node

1712th October 2022INF205

Sparse graphs vs. dense graphs

Neighbour lists, implemented as adjacency or incidence lists, are most suita-
ble for sparse graphs. Matrix-like data structures are best for dense graphs.

sparse graphsdense graphs

comparably
many edges

comparably
few edges

1812th October 2022INF205

Adjacency matrix

Matrix-like data structures include two-dimensional arrays, i.e., arrays where
the individual elements are accessed by double indexing. The most relevant
use for graphs is the adjacency matrix. (Also possible: An incidence matrix.)

For a sparse graph, the vast majority of entries in the 2D array/matrix is “false”.
Adjacency matrices are commonly only used when expecting a dense graph.

0

1

2

3

4

bool adj[5][5]={ {true, true, true, false, false},

{false,false, false, true, false},

{true, true, false, false, false},

{false,true, true, false, false},

{true, false, true, false, false} };

out of node 0

out of node 1

out of node 2

out of node 3

out of node 4

1912th October 2022INF205

What are typical problems for graphs?

Most important computational problems for graph data structures:

Traversal of the nodes in the graph, including searching. Two canonical ways:
– Depth first search (DFS), always goes into depth as far as possible:

• Push edges to a stack; pull from stack to visit the next node.
– Breadth first search (BFS), visits nodes in the order they are detected:

• Push edges to a queue; pull from stack to visit the next node.

Reduction to a tree with a given root node (spanning tree), for example, using
DFS or BFS for a “depth-first” or “breadth-first” tree. Also the shortest paths, if
nodes have different “distances” from each other (edge weights).

Looking for paths in a graph: This includes cycles (same start and end node),
the shortest paths (see above), or Hamilton paths/cycles (once at every node).

Related: Connected components and strongly connected components.

2012th October 2022INF205

Graph traversal and spanning trees

Traversal of trees and graphs: Depth-first search and breadth-first search

depth-first search (DFS)

0

12

3 4

5

67

8

9

0

1

2

3

4

5

7

9

8

6

begin
here

breadth-first search (BFS)

begin
here

DFS always proceeds from the most recently detected node (LIFO).
BFS always proceeds from the node that was detected earliest (FIFO).

Note: Only elements to which there is a path from the initial node can be found.

2112th October 2022INF205

Shortest paths: Dijkstra’s algorithm

Oslo

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

33 22

7

21

21

43

60

30

63

27
13

29

26

Assumptions:

Undirected graph
All distances are positive

In each iteration, visit
the detected node
closest to the root.

Process all edges to
which that node is
incident, detecting
any undetected
neighbours, and
updating tentative
distances.

2212th October 2022INF205

Shortest paths: Dijkstra’s algorithm

Oslo

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

33 22

7

21

21

43

60

30

63

27
13

29

26

root
node

distance 7

distance 21

distance 84
via Moss

distance 37
via Ski

distance 29
via Ski

distance 48
via Moss

distance 64
via Moss

28 edge from Ski to Moss
29 edge from Ski to Oslo
37 edge from Ski to Askim
48 edge from Moss to Fredrikstad
64 edge from Moss to Horten
84 edge from Moss to Askim

priority queue data structure

2312th October 2022INF205

Shortest paths: Dijkstra’s algorithm

Oslo

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

33 22

7

21

21

43

60

30

63

27
13

29

26

root
node

distance 7

distance 21

distance 37

distance 29

distance 48 distance 61

distance 62

distance 63

distance 64

Example code incidence-list-graph
uses an STL multimap as the priority
queue needed in Dijkstra’s algorithm.

A tailored data
structure is used
both for the graph
and for the tree
that contains all
the shortest paths.

INF205 12th October 2022

2 Data structures

2.5 Templates
2.6 Graph data structures
2.7 Tailored containers

2512th October 2022INF205

Ownership, “rule of five” or “of three”

Container objects take ownership (i.e., lifetime and deallocation responsibility)
for all or some of the data that they contain. Ownership of data in memory is
unique: When the container is deallocated, its owned data are deallocated.

The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

Examples (for “rule of five”):
– UndirInclistGraph in incidence-list-graph;

this is an incidence list based implementation of an undirected graph.
– DynamicArray in sequence-performance.

“Rule of five:” Implement (1) destructor,
(2) copy constructor, (3) copy assign-
ment operator, (4) move constructor,
(5) move assignment operator.

“Rule of three:” (1) destructor,
(2) copy constructor, (3) copy
assignment operator.

At least implement (1) the destructor!
If (2) and (3) are not there, forbid copying.

2612th October 2022INF205

Copy constructor and assignment

The copy constructor is called if a new object is created (hence, constructor)
and initialized to have the same content as another object (hence, copy).

UndirInclistGraph* g = new UndirInclistGraph;
… // read content of g from file
UndirInclistGraph h = *g;
delete g;

… // do something with h

This line calls the default constructor
UndirInclistGraph::UndirInclistGraph()

This line calls the copy constructor
UndirInclistGraph::UndirInclistGraph(const UndirInclistGraph& original)

This line calls the destructor UndirInclistGraph::~UndirInclistGraph()

The implementation must ensure that we can still use h correctly,
even though it was copied from *g which is now deallocated

The copy assignment operator (see examples) is called in cases just as above,
but when the object to which we copy already exists (no need for constructor).

Often the copy constructor needs to create a deep copy of the owned data:
They are copied in memory, rather than just copying pointers (shallow copy).

2712th October 2022INF205

Move constructor and assignment

The move constructor and, similarly, the move assignment operator, are called
when content is assigned to a new object just before the old object is deleted.

A typical use case is returning a local object from a function as its return value.
We can then often avoid the expensive deep copying of the owned content.

// move constructor:
// we simply take over the content from the old array

DynamicArray::DynamicArray(DynamicArray&& old)
{
 // take over content from old (no deep copying!)
 this->values = old.values;
 this->capacity = old.capacity;
 this->logical_size = old.logical_size;

 // remove from old so that it does not get deleted
 old.values = nullptr;
 old.capacity = 0;
 old.logical_size = 0;
}

// copy constructor:
// afterward, the content must exist in memory twice

DynamicArray::DynamicArray(const DynamicArray& original)
{
 this->values = new int[original.capacity]();
 this->capacity = original.capacity;

 // deep-copy the content of original
 if(original.values != nullptr)
 std::copy(original.values,

original.values + original.logical_size, this->values);

 this->logical_size = original.logical_size;
}

INF205 12th October 2022

Conclusion

2912th October 2022INF205

Project group formation

INF205 12th October 2022

INF205
Resource-efficient programming

2 Data structures

2.5 Templates
2.6 Graph data structures
2.7 Tailored containers

