
INF205 19th October 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

2 Data structures

2.7 Tailored containers

INF205 19th October 2022

Digitalisering på Ås

Institutt for datavitskap

2 Data structures

2.7 Bespoke containers

319th October 2022INF205

“Rule of five” or “rule of three”

Container objects take ownership (i.e., lifetime and deallocation responsibility)
for all or some of the data that they contain. Ownership of data in memory is
unique: When the container is deallocated, its owned data are deallocated.

The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

“Rule of five:” Implement
(1) destructor,
(2) copy constructor,
(3) copy assignment operator,
(4) move constructor,
(5) move assignment operator.

“Rule of three:”
(1) destructor,
(2) copy constructor,
(3) copy assignment operator.

At least implement (1) the destructor!
If (2) and (3) are not there, forbid copying.

Most often you will then also need
to implement (0) a constructor.

419th October 2022INF205

Ownership

Example: Let us assume that class T
has one property for which it has
ownership, a pointer p to class S that
points to an array of 1000 S elements.

Container objects take ownership, i.e., lifetime and deallocation responsibility.
The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

class T
{
public:
 T() { this->p = new S[1000](); }
 …
private:
 S* p = nullptr;
 …
}

It is typical for the owned content, if
manual memory management needs
to be done, to be allocated in the
constructor, T::T() and/or T::T(…).

If you create a constructor with arguments,
also implement the default constructor.

T tobject;
T* tpointer = new T;

519th October 2022INF205

Destructor

General rule: For every “new” there must be a matching “delete”.
For containers, this almost always needs to be at least in the destructor.

class T
{
public:
 …
 ~T() { delete[] this->p; }
 …
private:
 S* p …
}

The destructor T::~T() is called when
an object of type T is deallocated.

void function_name(…)
{
 // constructor is called
 T tobject;
 …
 // destructor is called
 return;
}

{
 …
 // constructor is called
 T* tpointer = new T;
 …
 // destructor is called
 delete T;
}

This is the case both for objects on the
stack and on the heap:

There might by
other properties
that do not need
to be deallocated
manually. (Why?)

without this delete[],
there would be a

memory leak!

619th October 2022INF205

Copy constructor

The copy constructor T::T(const T& orig) is
called when the following two are done at
the same time: (1) allocation of an object,
so that a constructor needs to be called,
and its (2) initialization to the value of a
pre-existing object that continues to exist.

class T
{
public:
 T() { this->p = new S[1000](); }
 T(const T& original) {
 this->p = new S[1000]();
 std::copy(
 original.p, original.p+1000,
 this->p
);
 }
 …
}

// default constructor
T tfirst;
…
// copy constructor
T tsecond = tfirst;

void func(T param) { … }

int main() {
 T tobject;
 …
 // copy constructor
 func(tobject);
}

Examples for when the copy constructor is called:

after running the
copy constructor, the

same content must
exist in memory

twice!

std::copy can be used
for data that are

contiguous in memory

1. Create space for the duplicate.
2. Now write the duplicate into it.

719th October 2022INF205

“Deep copy” vs “shallow copy”

Shallow copy:

Standard copying, such as if there is
no handwritten copy constructor or
copy assignment operator, will
simply copy the value of pointers,
not the content to which they point.

After shallow copying, the content will
exist once in memory. This can be
appropriate when the content is not
owned but just pointed at.

original copydata

Deep copy:

Standard copying, such as if there is
no handwritten copy constructor or
copy assignment operator, will
simply copy the value of pointers,
not the content to which they point.

After deep copying, content exists twice in
memory. Design following the concept of
a “container” that uniquely “owns” its
content requires deep copying.

original copydatadata

819th October 2022INF205

Copy assignment operator

The copy assignment operator technically
is an overloaded “=” operator:

class T
{
public:
 T() { this->p = new S[1000](); }
 T& operator=(const T& rhs) {
 if(&rhs == this) return *this;
 delete this->p;
 this->p = new S[1000];
 std::copy(
 rhs.p, rhs.p+1000, this->p
);
 return *this;
 }
 …
}

// default constructor
T tfirst, tsecond;
…
// copy assignment
tsecond = tfirst;

A copy assignment is
done whenever we copy
the value of one variable
to another, both existed
before, and both
continue to exist.

after running the
copy assignment, the

same content must
exist in memory

twice!

T& T::operator=(const T& rhs) { … }

Difference from the copy constructor:
– Object already exists, hence no initial

allocation of memory for content
– But deallocate pre-existing content

Note that a reference to *this
needs to be returned.

919th October 2022INF205

Move constructor

The move constructor is called when the
content of an old object can be shifted to a
new object that is allocated and initialized
(e.g., before we deallocate the old object).

class T
{
public:
 T() { this->p = new S[1000](); }

 T(T&& old) {
 this->p = old.p;
 old.p = nullptr;
 }
 …

private:
 S* p …
}

T::T(T&& old) { … }

A shallow copy of the
pointer to the content is
good enough; after the
action, the content exists
in memory only once!

Attention: Right after the
move constructor for

“this”, the destructor of
“old” might be called.

Remove all pointers to
the content from old, so

that it does not get
deallocated!

T func(…) {
 T tfirst;
 …
 return tfirst;
 // the destructor will be called
}

int main() {
 // but before, call the move constructor
 T tsecond = std::move(func(…));
}

Typical use case: Efficient
handover of content

returned by a function.

1019th October 2022INF205

Move: Why is it advantageous?

Copy constructor + destructor:

If there is no move constructor, or
the compiler does not enforce a
move, first all the content is copied
(deep copy); the old container is
probably deallocated right after.

This is an expensive operation whenever
there is a substantial amount of data. All
data are copied, unnecessarily, since at the
end they still exist only once in memory.

old newdatadata

Move constructor + destructor:

The move constructor is used to
make a new container own the data
without copying the data. A shallow
copy is made, and the data are
detached from the old container.

The shallow copy is an inexpensive
operation. If the data exist once in memory
both before the operation and after, why
copy them from one place to another?

old newdata

0
0
0
0

1119th October 2022INF205

Move assignment operator

The move assignment operator relates to the move constructor the same way
as the copy assignment operator relates to the copy constructor.

T func(…) {
 T tfirst;
 …
 return tfirst;
 // the destructor will be called
}

int main() {
 T tsecond;
 …
 // but before, call the move assignment operator
 tsecond = std::move(func(…));
}

T& T::operator=(T&& old) { … } old thisdatadata

old thisdata

old thisdata

0
0
0
0

constructor called

tsecond exists already

1219th October 2022INF205

Tutorial week 41 examples

See the copying-and-moving code for an implementation and performance
comparison for the STL and directly written sequences with int elements.

Below: Copy and move assignment operators for the singly linked list.

// copy assignment: clear pre-existing content,
// then make a deep copy of original content

SinglyLinkedList& SinglyLinkedList::operator=(
 const SinglyLinkedList& right_hand_side
) {
 if(&right_hand_side == this) return *this;
 this->clear(); // remove pre-existing content

 for(
 auto n = right_hand_side.begin();
 n != nullptr;
 n = n->get_next()
) this->push_back(n->get_item());

 return *this;
}

// move assignment: clear pre-existing content,
// then shallow-copy pointers to moved content

SinglyLinkedList& SinglyLinkedList::operator=(
 SinglyLinkedList&& old
) {
 if(&right_hand_side == this) return *this;
 this->clear(); // remove pre-existing content

 // now proceed as for the move constructor
 this->head = old.head;
 this->tail = old.tail;
 old.head = nullptr;
 old.tail = nullptr;

 return *this;
}

1319th October 2022INF205

Tutorial week 41 examples

For week 41 problem 3, about deletion of
nodes and edges in a graph, see example
code node-edge-deletion.

This also includes a few other minor
improvements of the incidence-list based
implementation of an undirected graph.

Oslo

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

33 22

7

21

43

60

30

63

27
13

29

26

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

7

21

43

60

30

63

27
13

29

26

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

7

21

43

60

30

63

27
13

29

26

root
node

distance 7

distance 37

distance 28
distance 63

distance 55

distance 68distance 71

distance 131

Dijkstra’s

algorithm

1419th October 2022INF205

Modern C++ constructs for ownership

By including <memory> from the C++ standard library, encapsulated pointer
templates (smart pointers) can be used that can support secure manual
memory management:

std::unique_ptr<T> p = new T();

Now the unique_ptr p has taken ownership of the new T object.
When p is deallocated, its destructor ensures that the T object is deallocated.

A smart pointer that can be copied, so that multiple smart pointers can point
to the same object and “own it together,” is of type std::shared_ptr<T>. That
object is deallocated once all shared pointers to it have been deallocated.

Unique-pointer objects cannot be copied, they can only be moved!

Core Guidelines I.11 recommends against ever passing ownership through
“raw” pointers or references. It advises to rely on smart pointers instead.

INF205 19th October 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

2 Data structures

2.7 Tailored containers

