
INF205 19th October 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Concurrency

3.1 Parallel programming
3.2 Message passing interface (MPI)

219th October 2022INF205

Concurrency: Why does it matter?

Assume a scenario where we can split a code into a fraction f that can be
parellelized and the remainder 1 – f that is always sequential, never parallel.

Adding two vectors c[i] = a[i] + b[i], for i from 0 to 99 999, can be parallelized.
Waiting for new instructions from the user cannot be parallelized.

Speedup is the factor by which runtime decreases; here, due to parallelization.

Amdahl’s law:
– Runtime with a single process is given by some t1 = (1 – f) t1+ f t1.

– Now assume that we are parallelizing the code as perfectly as possible:

• With n parallel processes, the runtime becomes tn = (1 – f) t1+ f t1/n.

– Now assume that we have infinite computing resources at our hands:

• With infinite parallel processes, the runtime becomes t∞ = (1 – f) t1.

– The maximum possible speedup for our code is S∞ = t∞/t1 = 1 / (1 – f).

If f = 99% can be parallelized, speedup can never be greater than S∞ = 100.

319th October 2022INF205

Concurrency: Why does it matter?

Concurrency as a topic is about what can be parallelized and what cannot.

Parallel programming is about efficiently exploiting a parallel architecture.

Domain decomposition is one of the techniques for this kind of concurrency.

load weather
warnings for A0

A B C D

0

1

2

3

load current
plane positions

load weather
warnings for C1

load weather
warnings for D3

load weather
warnings for C2

…

…

warn planes in
A0 if needed

warn planes in
C1 if needed

warn planes in
D3 if needed

warn planes in
C2 if needed

…

…

INF205 19th October 2022

Digitalisering på Ås

Institutt for datavitskap

3 Concurrency

3.1 Parallel programming

519th October 2022INF205

Message passing

Message passing is the most general paradigm of parallel programming.

It can be carried out irrespective whether or not the processes (can also be
called ranks in MPI) are executed on the same computing node and have
shared memory access. It only assumes that they can exchange messages.

Challenges of message passing based parallelization:

– Synchronization (waiting) while processes need to talk to each other.
– What if there are very many processes, do they all message each other?

– What if the recipient would already have had access to the data?
– Processes need to figure out what information they must give to others.

In high performance computing, message-passing based parallelization is
usually done using MPI, the message passing interface.

INF205 19th October 2022

Digitalisering på Ås

Institutt for datavitskap

3 Concurrency

3.1 Parallel programming
3.2 Message passing interface

719th October 2022INF205

MPI: Getting started

The target systems of MPI programs are often clusters with thousands of cores.

However, the code is not usually developed on these systems, but on the
programmers’ usual working environment. Even on a laptop/workstation, MPI
makes you realize a speedup, since today these are all multicore systems.

To get started install an MPI environment, e.g., Open MPI (package openmpi).

The compiler command becomes “mpiCC …” or similar (instead of “g++ …”).
The binary executable produced by the compiler will not run on its own!

Instead: mpirun -np <number of processes> <executable>

This creates a number of parallel processes with ranks starting from 0.
Often the process with rank 0 takes the role of the “master” or “scheduler”.

See also the Open MPI documentation: https://www.open-mpi.org/doc/v4.1/

https://www.open-mpi.org/doc/v4.1/

819th October 2022INF205

MPI: Getting started

An MPI program needs to initialize and finalize the MPI environment.
Every process needs to know its rank (and, usually, the number of processes).

(See the mpi-primes example code.)

#include <mpi.h>

int main(int argc, char** argv)
{
 MPI_Init(&argc, &argv);

 int rank = 0; // what is the rank of this process?
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 int size = 0; // how many processes are there?
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 … // here comes the actual program

 MPI_Finalize();
}

Often the rank no. of a process,
together with the number of
processes, is already enough
input to implement a basic
parallelization scheme.

This is also the case for our
prime-number test example:

5 7 11 13 17 19 23 …
0 0 1 1 2 2 3 …

919th October 2022INF205

MPI send and receive

The most basic communication step is send/receive from one rank to another.

int MPI_Send(
 void* content, int count, MPI_Datatype type,
 int destination_rank, int tag, MPI_Comm handle
);

int MPI_Recv(
 void* buffer, int count, MPI_Datatype type,
 int source_rank, int tag, MPI_Comm handle,
 MPI_Status* status);

content is the address from which the source
data are read; it is often an array, but can also
be a pointer to a single data item

buffer is an address to which the received
data can be written; the programmer needs
to take care of memory allocation, etc.

count is the number of data items

type is their type as an MPI environment expression
(e.g., MPI_SHORT_INT, MPI_INT64_T, MPI_FLOAT, …)

tag is an identifier; send and receive must have the same tag

destination_rank is the rank of the process
with the matching MPI_Recv(…) operation

source_rank is the rank of the process with
the matching MPI_Send(…) operation

(Standard values from handle and status are MPI_COMM_WORLD and MPI_STATUS_IGNORE.)

INF205 19th October 2022

Digitalisering på Ås

Institutt for datavitskap

Conclusion

INF205 19th October 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Concurrency

3.1 Parallel programming
3.2 Message passing interface (MPI)

