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MPI: Getting started

The target systems of MPI programs are often clusters with thousands of cores.

However, the code is not usually developed on these systems, but on the 
programmers’ usual working environment. Even on a laptop/workstation, MPI 
makes you realize a speedup, since today these are all multicore systems.

To get started install an MPI environment, e.g., Open MPI (package openmpi).

The compiler command becomes “mpiCC …” or similar (instead of “g++ …”). 
The binary executable produced by the compiler will not run on its own!

Instead: mpirun -np <number of processes> <executable>

This creates a number of parallel processes with ranks starting from 0.
Often the process with rank 0 takes the role of the “master” or “scheduler”.

See also the Open MPI documentation: https://www.open-mpi.org/doc/v4.1/ 

https://www.open-mpi.org/doc/v4.1/
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MPI: Getting started … observations

What we found during and after the tutorial sessions:

– Under Windows, it is possible to install MS MPI.
• Compilation using MS MPI works together with Visual Studio;

it worked in at least one case; in at least one, there were problems.
• It also worked with Code::Blocks in at least one case
• To execute the program (and vary the number of processes), a 

terminal is still needed; working with paths can be complicated

– Even with OpenMPI it can be necessary to use “mpic++”, not “mpiCC”.

– It can be necessary to install package “libopenmpi-dev” explicitly.

– macOS is POSIX compliant so that it mostly works exactly like Linux.

– Nobody is now using MVAPICH, all are with OpenMPI or MS MPI. (?)

Q: What other technical issues did you solve, what was unexpected?
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Paradigms of parallel programming
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https://dx.doi.org/10.1109/tc.1972.5009071
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Message passing

Message passing is the most general paradigm of parallel programming.

It can be carried out irrespective whether or not the processes (can also be 
called ranks in MPI) are executed on the same computing node and have 
shared memory access. It only assumes that they can exchange messages.

Challenges of message passing based parallelization:

– Idle time while processes are engaged in blocking communication.
– What if there are very many processes, do they all message each other?

– What if the recipient would already have had access to the data?
– Processes need to figure out what information they must give to others.

In high performance computing, message-passing based parallelization is 
usually done using MPI, the message passing interface.
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Shared memory

In shared memory parallelization, all processes (in OpenMP, threads) have 
access to all the data. At each step, a task will usually work on part of the data.

Challenges of shared memory parallelization:

– Race conditions: Order of access to a data item influences the result.
– Synchronization delay from tools designed to avoid race conditions.

– What if at the hardware level, not all the CPUs can access all the data?
– What if they can, but some can access an item much faster than others?

The main advantage of shared memory parallelization is that it avoids sending 
messages from process to process. Instead, we may assume that all processes 
can immediately “see” all that was done by the others.

True shared-memory parallelization is mostly done using OpenMP. Partitioned 
global address spaces are used to write code as if there was shared memory.
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Software vs. hardware architecture
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INF205 programming project

What are the required actions?

– Submit a group status report each week, from calendar week 43 to 47: 
• Week 43: Confirm composition of your group.

Deadline: 31st October 2022.

• Week 44: Make a final decision on the topic that your group works on.
Deadline: 7th November 2022.

• Week 45: Briefly summarize your design decisions and/or design alternatives 
regarding data structures, algorithms/performance, and concurrency.
Deadline: 14th November 2022.

• Week 46: Confirm the scheduled presentation date for your group.
Deadline: 21st November 2022.

• Week 47: Quantify each individual participant’s contribution to the different 
aspects of the group work (for the individualized part of the grade).
Deadline: 28th November 2022.

– Week 48: Submit your code and any additional documentation.
Deadline: 5th December 2022.

– Give a presentation on your group work. (In weeks 48, 49, and 50.) 
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Grading scheme

– 45% code/programming (group grade)
• 15% data structures
• 15% algorithms/performance
• 15% concurrency

– 45% documentation (group grade)
• 25% group status reports
• 10% comments and code intelligibility
• 10% other documentation (e.g., submitted slides)

– 10% individual contribution

The group presentations are not graded, but a mandatory activity.
Slides may be submitted; if that is done, they are part of the documentation.

The group status reports (weeks 43 to 47) are also part of the documentation.
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Task decomposition by MPI rank

An MPI program needs to initialize and finalize the MPI environment.
Every process needs to know its rank (and, usually, the number of processes).

(See the mpi-primes example code.)

#include <mpi.h>

int main(int argc, char** argv)
{
   MPI_Init(&argc, &argv);

   int rank = 0;  // what is the rank of this process?
   MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

   int size = 0;  // how many processes are there?
   MPI_Comm_size(MPI_COMM_WORLD, &size); 

   …  // here comes the actual program

   MPI_Finalize();
}

Often the rank no. of a process, 
together with the number of 
processes, is already enough 
input to implement a basic 
parallelization scheme.

This is also the case for our 
prime-number test example:

5 7 11 13 17 19 23 …
0 0 1 1 2 2 3 …

From the documentation: “Open MPI accepts the 
C/C++ argc and argv arguments to main, but 
neither modifies, interprets, nor distributes them”.
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Task decomposition by MPI rank

(See the mpi-primes example code.)

int main(int argc, char** argv)
{
   …
   MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
   MPI_Comm_size(MPI_COMM_WORLD, &size); 
   …

   for(n = 6*(rank+1) - 1; n < limit; n += 6*size)
      if(is_prime(n)) counted_primes++;
   for(n = 6*(rank+1) + 1; n < limit; n += 6*size)
      if(is_prime(n)) counted_primes++;

   …
}

5 7 11 13 17 19 23 …
0 0 1 1 2 2 3 …

Message passing: Whether or not processes would be able to access the 
same data, we operate under the assumption that there is no shared memory.

It is a common strategy to 
parallelize the domain (parts 
of the problem) in terms of 
ownership of associated data.

Often, rank 0 is in charge of 
doing an overall evaluation 
based on all processes’ data.
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MPI send and receiveMPI send and receive

The most basic communication step is send/receive from one rank to another.

int MPI_Send(
   void* content, int count, MPI_Datatype type,
   int destination_rank, int tag, MPI_Comm handle
);

int MPI_Recv(
   void* buffer, int count, MPI_Datatype type,
   int source_rank, int tag, MPI_Comm handle,
   MPI_Status* status );

content is the address from which the source 
data are read; it is often an array, but can also 
be a pointer to a single data item

buffer is an address to which the received 
data can be written; the programmer needs 
to take care of memory allocation, etc.

count is the number of data items

type is their type as an MPI environment expression
(e.g., MPI_SHORT_INT, MPI_INT64_T, MPI_FLOAT, …)

tag is an identifier; send and receive must have the same tag

destination_rank is the rank of the process 
with the matching MPI_Recv(…) operation

source_rank is the rank of the process with 
the matching MPI_Send(…) operation

(Standard values from handle and status are MPI_COMM_WORLD and MPI_STATUS_IGNORE.)
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MPI ping-pong example

if(rank == 0)
   MPI_Send(&(++counter), 1, MPI_INT64_T, 1, 1, MPI_COMM_WORLD);

if(rank == 1)
   MPI_Recv(
      &buffer, 1, MPI_INT64_T, 0, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE
   );

the tag for send and receive must be the same

“write 1 item of type
int64_t to &buffer”

“increment counter, then read 1 item
of type int64_t from &counter”

“send it to rank 1”

“receive it from rank 0”

One of the processes (say, rank 0) will reach the send/receive first.
Blocking communication: That process is idle, waiting for the other process.

rank 0

rank 1

MPI_Send … … … (idling)

“Acknowledging” (MPI_Recv or buffer)
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Blocking communication

Depending on the MPI environment, with MPI_Send, the process may wait for 
the other process to reach its MPI_Recv (synchronization), or it could wait for a 
signal from the receiving process that data are written into a receive buffer.

– Both the synchronized and the buffered send implementation require 
waiting for a signal from the receiving process. The sending process 
remains blocked (idle). Hence, this is blocking communication.

– Use MPI_Ssend, with two ‘s’, if you want to enforce synchronization.

rank 0

rank 1

MPI_Ssend … … … (idling)

MPI_Recv

 
Blocking communication: One process is idle, waiting for the other process.

There is also “local blocking” send, MPI_Bsend, which uses a send buffer.



1826th October 2022INF205

Non-blocking communication

All the MPI communication operations also have non-blocking variants. Their 
names begin with “I” for “immediate”. MPI_Isend and MPI_Irecv are like 
MPI_Send and MPI_Recv, but return immediately. They also create a “handle”.

MPI_Test informs us if the action related to the handle has already completed.

rank 0

rank 1

MPI_Isend

MPI_Irecv

rank 0

rank 1

MPI_Ssend … … … (idling)

MPI_Recv

 
Blocking communication: One process is idle, waiting for the other process.

MPI_Wait or MPI_Test

 
Non-blocking communication: Return immediately, work in background later.

MPI_Wait or MPI_Test



INF205 26th October 2022

Digitalisering på Ås

Institutt for datavitskap

3 Concurrency

3.1 Parallel computing
3.2 Message passing interface
3.3 Collective communication



2026th October 2022INF205

MPI_BarrierMPI_BarrierMPI_Barrier

Synchronization

MPI_Barrier(comm) enforces synchronization between all processes.

Example: Make all processes output some array content in order.

rank 1

rank 0

rank 2

rank 3

rank 4

do output

do output

do output

do output

do output

MPI_Barrier

for(int i = 0; i < rank; i++) MPI_Barrier(MPI_COMM_WORLD);
std::cout << …;   
for(int i = rank; i < size; i++) MPI_Barrier(MPI_COMM_WORLD);
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Collective communication

Send/receive is done from one sender process to one recipient process.
In a collective communication step, all the MPI ranks participate jointly.

– Broadcast: MPI_Bcast(buffer, count, type, root, handle)
After the broadcast, all processes’ buffers contain the value that used to be 
in the buffer of the root process. Rank 0 is often used as the root process.

– Scatter: MPI_Scatter(content, count, type, buffer, count, type, root, handle)
Like broadcast, but content is split (scattered) over the recipients’ buffers.

– Reduce: MPI_Reduce(content, buffer, count, type, operation, root, handle)
Content from all the processes is aggregated into the buffer of the root 
process. For example, add up all the values (with MPI_SUM as operation).

– Gather: MPI_Gather(content, count, type, buffer, count, type, root, handle)
The gather operation is the opposite of scatter. Split content from all 
processes is written into one big buffer at the root process.
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Broadcast and scatter

See example “collective-communication”.
Broadcast operation:

– MPI_Bcast(content, 15, MPI_CHAR, 0, MPI_COMM_WORLD)
Scatter operation:

– MPI_Scatter(content, 3, MPI_CHAR, local_chunk, 3, MPI_CHAR, 0, …)

Initalizing char content[15].
rank 0: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 1: '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''
rank 2: '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''
…

Broadcasting content[15].
rank 0: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 1: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 2: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
…

Scattering content[15] to local_chunk[3].
rank 0: 'a' 'b' 'c'
rank 1: 'd' 'e' 'f'
rank 2: 'g' 'h' 'i'
…

“content has space for 15 character items”

“take original content from rank 0”

“split up content into messages containing 3 character items”

“receive 3 character items and write them to local_chunk”
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Gather and reduce

Scattering content[15] to local_chunk[3].
rank 0: 'a' 'b' 'c'
rank 1: 'd' 'e' 'f'
rank 2: 'g' 'h' 'i'
…

Gathering using MPI_Gather.
rank 0: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 1: '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''
rank 2: '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''
…

Reducing local chunks into 'reduced' using MPI_Reduce with MPI_MAX.
rank 0: 'm' 'n' 'o'
rank 1: '' '' ''
rank 2: '' '' ''
…

See example “collective-communication”.
Gathering operation (all ranks to the root rank):

– MPI_Gather(local_chunk, 3, MPI_CHAR, content, 3, MPI_CHAR, 0, …)
Scatter operation (all ranks to the root rank):

– MPI_Reduce(local_chunk, reduced, 3, MPI_BYTE, MPI_MAX, 0, …)

    Name           Meaning
    __________     ___________________
    MPI_MAX        maximum
    MPI_MIN        minimum
    MPI_SUM        sum
    MPI_PROD       product
    MPI_LAND       logical and
    MPI_BAND       bit-wise and
    MPI_LOR        logical or
    MPI_BOR        bit-wise or
    MPI_LXOR       logical xor
    MPI_BXOR       bit-wise xor
    MPI_MAXLOC     max value, location
    MPI_MINLOC     min value, location
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Allgather and allreduce

Scattering content[15] to local_chunk[3].
rank 0: 'a' 'b' 'c'
rank 1: 'd' 'e' 'f'
rank 2: 'g' 'h' 'i'
…

Gathering using MPI_Allgather.
rank 0: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 1: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 2: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
…

Reducing local chunks into 'reduced' using MPI_Allreduce with MPI_MAX.
rank 0: 'm' 'n' 'o'
rank 1: 'm' 'n' 'o'
rank 2: 'm' 'n' 'o'
…

See example “collective-communication”.
Gathering operation (all ranks to all ranks):

– MPI_Allgather(local_chunk, 3, MPI_CHAR, content, 3, MPI_CHAR, …)
Scatter operation (all ranks to all ranks):

– MPI_Allreduce(local_chunk, reduced, 3, MPI_BYTE, MPI_MAX, …)

    Name           Meaning
    __________     ___________________
    MPI_MAX        maximum
    MPI_MIN        minimum
    MPI_SUM        sum
    MPI_PROD       product
    MPI_LAND       logical and
    MPI_BAND       bit-wise and
    MPI_LOR        logical or
    MPI_BOR        bit-wise or
    MPI_LXOR       logical xor
    MPI_BXOR       bit-wise xor
    MPI_MAXLOC     max value, location
    MPI_MINLOC     min value, location
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Discussion

What MPI operation(s) would we use for the following?

– There are n processes (ranks).

– Each rank generates k = 65536 floating-point 
random numbers between 0 and 1. 

– Now there are k·n random numbers. We would 
like all of them together to become a unit 
vector x = (x0, …, xkn–1) such that x2 = 1.

– We definitely don’t want to send all the values 
to all processes, especially if k becomes even 
greater, but do this as efficiently as possible.

Discussed MPI 
operations

MPI_Send
MPI_Recv

MPI_Wait

MPI_Bcast
MPI_Scatter
MPI_Reduce
MPI_Gather

MPI_Allgather
MPI_Allreduce

MPI_Isend
MPI_Irecv

MPI_Test

MPI_Ibcast
MPI_Iscatter
MPI_Ireduce
MPI_Igather

MPI_Iallgather
MPI_Iallreduce

(See the unit-vector example for a code where the implementation is missing.)
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Discrete event systems

Terminology related to concurrency is often taken from the domain of discrete 
event systems (for example, finite automata). Adopting such an approach:

– A system can be in any of a finite number of states (or configurations).
– Events, or transitions between states, are thought of as instantaneous.
– A concurrent process is a (partially) temporally ordered set of events.

– Two events or transitions t and t’ can be …
• … concurrent whenever they are both enabled (i.e., both can occur), 

one does not inhibit the other, and t·t’ has the same outcome as t’·t;
in other words, they are concurrent if we don’t say which comes first.

• … causally dependent if they both occur, and it is important to say 
which comes first, either because only one order is possible or 
because it will have an impact on the outcome.

– Limitation: This model cannot make two transitions strictly synchronous.
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Diagrams for partially ordered sets

Two events are directly or indirectly causally dependent 
if one is specified to occur (conclude) before the other 
occurs (begins). Above: e and a are indirectly dependent.

Events are concurrent if they are not directly or indirectly 
causally dependent – it does not matter which occurs first. 
Above: e and a are concurrent.

By convention, Hasse diagrams are often used to denote causal dependency 
of events. These diagrams remove any indirect or redundant dependencies:

a

d

e

b

c

b

ae

a

d

e

b

c

b

ae

Hasse diagramnot a Hasse diagram

This notation only 
shows the transitions 
(events). The states 
(configurations) of the 
system are not shown.

Attention
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