
INF205 2nd November 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Concurrency

3.5 Message passing with ROS
3.6 Shared memory (OpenMP)
3.7 Concurrent process models

22nd November 2022INF205

Orion: A heterogeneous architecture

https://orion.nmbu.no/en/OrionHPC

https://orion.nmbu.no/en/OrionHPC

32nd November 2022INF205

Orion accounts

Groups that submitted a week 43 status report should have received an
account (inf205-22-xx; “xx” is the group no.) and password for Orion access.

Documentation:
– https://orion.nmbu.no/en/connectingtoorion

Verify that you can login:
– ssh inf205-22-xx@login.orion.nmbu.no

To get ssh/scp access without needing to type the password:
– ssh-keygen (on Orion)
– scp ~/.ssh/id_rsa.pub inf205-22-xx@login.orion.nmbu.no:~/.ssh/authorized_keys

Home directory (~) for executables, etc., $SCRATCH for large temporary data.

You need to be connected to the VPN (https://na.nmbu.no/) to obtain access.

https://orion.nmbu.no/en/connectingtoorion
https://na.nmbu.no/

42nd November 2022INF205

Load modules and compile the code

Whenever possible, compile code on the target platform.
(Otherwise, cross-compilation has to be done …). So let us compile on Orion.

Example

scp ... inf205-22-xx@login.orion.nmbu.no:~/src/primes/

ssh inf205-22-xx@login.orion.nmbu.no

module avail
module load OpenMPI/4.0.5-GCC-10.2.0

...

make

mv count-primes-mpi ~/bin/

52nd November 2022INF205

Submit your job to the SLURM queue

#!/bin/bash
#SBATCH --tasks-per-node=24 # 24 cores
#SBATCH --nodes=1 # use 1 node
#SBATCH --time=00:30:00 # half an hour walltime
#SBATCH --job-name=primes24 # sensible name for the job
#SBATCH --partition=smallmem # use smallmem when requiring <10 GB RAM
#SBATCH --mail-user=XXX@nmbu.no # email me when job is done.
#SBATCH --mail-type=ALL

cd /mnt/SCRATCH/inf205-22-xx

module load OpenMPI/4.0.5-GCC-10.2.0

mpirun -np 24 /mnt/users/inf205-22-xx/bin/count-primes-mpi 1000000000 > primes24.out

primes24.run

sbatch primes24.run squeue

Example

62nd November 2022INF205

Submit your job to the SLURM queue

INF205 2nd November 2022

Digitalisering på Ås

Institutt for datavitskap

3 Concurrency

3.5 Robot operating system

82nd November 2022INF205

ROS2 installation

Documentation: http://docs.ros.org/

Installation by adding http://packages.ros.org/ros2/ubuntu repository to apt.

The standard procedure for compiling code that uses ROS2 requires cmake.

Release: June 2020
End of life: May 2023

Release: May 2021
End of life: Nov. 2022

Release: May 2022
End of life: May 2027

http://docs.ros.org/
http://packages.ros.org/ros2/ubuntu

92nd November 2022INF205

ROS2 message passing paradigm

In a ROS2 communication graph, nodes and communication patterns are
connected by edges that describe the direction of the data flow:

Figure: https://docs.ros.org/en/rolling/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html

ROS calls its parallel processes nodes (do not need to be separate machines).

https://docs.ros.org/en/rolling/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html

102nd November 2022INF205

ROS message passing paradigm

Topic:
– Asynchronous n-to-n communication channel
– Publisher nodes can publish to the topic, all subscriber nodes can read

Service:
– Synchronous one-to-one communication
– One node requests another node and waits until the response comes

Action:
– Asynchronous request from one node to another node

Where MPI and OpenMP both build on SPMD (“single program, multiple data”
whether they are SIMD or MIMD), in ROS it would be MPMD. Each
node/process in ROS has its own code and its own binary executable.

Communication in ROS can be categorized as follows:

112nd November 2022INF205

ROS2 package creation

A ROS2 C++ package for compilation supported by cmake can be created by

ros2 pkg create --build-type ament_cmake prjname --dependencies rclcpp …

This creates a package XML file and an input file for cmake.
XSD metadata schema http://download.ros.org/schema/package_format3.xsd

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
 <name>prjname</name>
 …
 <license>CC BY-NC-SA</license>
 <buildtool_depend>ament_cmake</buildtool_depend>
 <depend>rclcpp</depend>
 …
</package>

package.xml

http://download.ros.org/schema/package_format3.xsd

122nd November 2022INF205

Action example1

1http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

Node acting as a server

shared_ptr<Node> node
 = Node::make_shared("server_name");
node->create_service<...>(
 "service_name", &fct
);

add_executable(
 server src/add_two_ints_server.cpp
)
ament_target_dependencies(
 server rclcpp example_interfaces
)

add_executable(
 client src/add_two_ints_client.cpp
)
ament_target_dependencies(
 client rclcpp example_interfaces
)

install(
 TARGETS server client
 DESTINATION lib/${PROJECT_NAME}
)

CMakeLists.txt

Node acting as a client

shared_ptr<Node> node
 = Node::make_shared("client_name");
auto client
 = node->create_client<...>("service_name");
// … create request …
auto result = client->async_send_request(request);

http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

132nd November 2022INF205

Example1

How to test the ros-nodes example:

– Compile the client and server codes using cmake.
• You may need to install cmake first.

– Run “server” on one terminal (or one computer in the network).
– Run “client x y” on another.
– They should interact, and the addition x+y should be performed.

Disclaimer: If you use ROS2 for your work, include a citation to the reference
S. Macenski et al., Science Robotics 7(66): eabm6074, doi:10.1126/
scirobotics.abm6074, 2022.

1http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

INF205 2nd November 2022

Digitalisering på Ås

Institutt for datavitskap

3 Concurrency

3.5 Robot operating system
3.6 OpenMP parallelization

152nd November 2022INF205

SIMD parallelism with OpenMP

Fork-join programming model: Alternation of parallel and sequential code.

fork fork

join join

parallel region parallel region

Compiler directives are used to specify that there should be a parallel region.

#pragma omp parallel
{
 …
}

– #include <omp.h>
– compile with -fopenmp
– before execution, export

OMP_NUM_THREADS=…

162nd November 2022INF205

Example: OpenMP compared to MPI

Compare the omp-primes example code to the mpi-primes example code.

int main(int argc, char** argv) {
 ...
 int64_t* counted_primes = new int64_t[num_threads]; // shared memory!
 omp_set_num_threads(num_threads); // default would be to create $OMP_NUM_THREADS threads
 #pragma omp parallel {
 int thread_id = omp_get_thread_num(); // corresponds to MPI_Comm_rank in the MPI code

 counted_primes[thread_id] = 0;
 for(int64_t n = 6*(thread_id+1) - 1; n < limit; n += 6*num_threads)
 if(is_prime(n)) counted_primes[thread_id]++;
 for(int64_t n = 6*(thread_id+1) + 1; n < limit; n += 6*num_threads)
 if(is_prime(n)) counted_primes[thread_id]++;
 }
 ...
 int64_t overall_primes = 0;
 for(int i = 0; i < num_threads; i++) overall_primes += counted_primes[i]; // shared memory!
 ...
}

Attention: Risk of
“false sharing” due to
L1 cache line overlap.

(Compare code omp-
primes-padding.)

172nd November 2022INF205

Discussion

Idea: What if we simply use a single int64_t variable to count all the primes?

int main(int argc, char** argv) {
 ...
 int64_t overall_primes = 0; // shared memory!
 omp_set_num_threads(num_threads); // default would be to create $OMP_NUM_THREADS threads
 #pragma omp parallel
 {
 int thread_id = omp_get_thread_num(); // corresponds to MPI_Comm_rank in the MPI code

 for(int64_t n = 6*(thread_id+1) - 1; n < limit; n += 6*num_threads)
 if(is_prime(n)) overall_primes++;
 for(int64_t n = 6*(thread_id+1) + 1; n < limit; n += 6*num_threads)
 if(is_prime(n)) overall_primes++;
 }
 ...
}

What do you expect from a code like this?

182nd November 2022INF205

Synchronization

– #pragma omp barrier:
Wait until all the processes have reached this point (same as in MPI)

– #pragma omp ordered:
Executed by the parallel processes in order, 0, 1, 2, …, sequentally

– #pragma omp atomic:
Mutually exclusive access to a statement where a data item is updated

– #pragma omp critical:
Mutually exclusive access to a block of code

– #pragma omp single:
Block of code is only executed by one of the concurrent processes

INF205 2nd November 2022

Digitalisering på Ås

Institutt for datavitskap

Programming projects:
Where do we stand?

202nd November 2022INF205

Programming projects

19 project groups with 51 members are confirmed.
(Out of 26 groups with 72 members theoretically existing on Canvas.)

pixels to circles

others

paths in
labelled graphs

minimize overlap
between spheres

INF205 2nd November 2022

Digitalisering på Ås

Institutt for datavitskap

3 Concurrency

3.5 Robot operating system
3.6 OpenMP parallelization
3.7 Concurrent process models

222nd November 2022INF205

Diagrams for partially ordered sets

Two events are directly or indirectly causally dependent
if one is specified to occur (conclude) before the other
occurs (begins). Above: e and a are indirectly dependent.

Events are concurrent if they are not directly or indirectly
causally dependent – it does not matter which occurs first.
Above: e and a are concurrent.

By convention, Hasse diagrams are often used to denote causal dependency
of events. These diagrams remove any indirect or redundant dependencies:

a

d

e

b

c

b

ae

a

d

e

b

c

b

ae

Hasse diagramnot a Hasse diagram

This notation only
shows the transitions
(events). The states
(configurations) of the
system are not shown.

Attention

232nd November 2022INF205

State-transition diagrams

In a state-transition diagram, two concurrent transitions give rise to “diamond”
patterns. More than two concurrent transitions lead to (hyper-)cube patterns:

e

eb

eba

ebe

ebae

ebd

ebad

ebde

ebade

ebadec

ebadeb

ebadebc

a

d

e

b

c

b

ae

Hasse diagram

b
d

d

d

e e

e e

da a

a a
b

bc

c

ebadebcab

Observation: With n concurrent events, we
obtain 2n states, making it prohibitively
expensive to explore the whole state space.
(“State explosion problem”.)

ε

e

242nd November 2022INF205

Petri nets

Components of a Petri net: places transitions tokens arc

2

2 1

11

1

p0

p0

t1
p2

p3
p0 t0

t0

p1

Semantics of this net:

Transition t0 can only be fired if place p0

contains at least two tokens. Firing t0

will take away two tokens from p0 and

add one token to p3.

Transition t1 can only be fired if both p0 and p1 each contain at least one token.

It removes one token from each, and adds one token to place p2.

252nd November 2022INF205

Petri nets: Example

– Transitions can be fired in the following order: t0t0t1t0t1t0t1t0,

t0t0t1t1t0t0t1t0, t0t1t0t0t1t0t1t0, t0t1t0t1t0t0t1t0, t1t0t0t0t1t0t1t0, and

t1t0t0t1t0t0t1t0. At that point, respectively, a deadlock is reached.

– The net is bounded: There is a limit to the number of tokens per place.

2

t0 t1
p0

p1
p2

t0 t0

t1 t1

t0

t0 t1
t0

firing sequence

262nd November 2022INF205

Petri nets and synchronous processes

Two subprocesses are synchronous (also, “coupled”) if it is specified that they
must overlap temporally, i.e., they must at least in part run at the same time.

2

p0
p2t0

p1 p3
t1

2

t2

t3

Note: Synchronicity (“coupling” – subprocesses must overlap) vs. direct causal
dependency (“linking” – may not overlap) vs. concurrency (order unspecified).

t1

t0

firing sequence
(Hasse diagram)

start of subprocess A

start of subprocess B end of subprocess B

end of subprocess A

t3

t2

Petri net representing two synchronous subprocesses A and B

272nd November 2022INF205

BPMN workflows
BPMN: Business Process Model and Notation

– XML input/output of workflows1 based on an XML schema (XSD)
– Hierarchical inclusion of a subworkflow within an overarching workflow
– Orchestration via process automation systems2 (e.g., Camunda)

– … and there are algorithms that translate BPMN into Petri nets:3

1https://www.omg.org/spec/BPMN/2.0.2/PDF. 2Ruecker, Practical Process Automation, O’Reilly, 2021.
3U. Mutarraf et al., Adv. Mech. Eng. 10(12), doi:10.1177/1687814018808170, 2018.

https://www.omg.org/spec/BPMN/2.0.2/PDF
https://dx.doi.org/10.1177/1687814018808170

282nd November 2022INF205

BPMN workflows

Business Process Model and Notation is standardized1 as ISO/IEC 19510:2013.

Example from A. Segatto, M. Milleri, C. Kavka, COMPOSELECTOR project deliverable 3.4, 2018.
1See also the specification at https://www.omg.org/spec/BPMN/2.0.2/PDF.

https://cordis.europa.eu/project/id/721105/results
https://www.omg.org/spec/BPMN/2.0.2/PDF

INF205 2nd November 2022

Digitalisering på Ås

Institutt for datavitskap

Conclusion

INF205 2nd November 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Concurrency

3.5 Message passing with ROS
3.6 Shared memory (OpenMP)
3.7 Concurrent process models

