
INF205 9th November 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Production

4.1 Image compression topic
4.2 Subgraph matching
4.3 Groups 2 and 26
4.4 Hard spheres

29th November 2022INF205

Scheduling project presentations

pixels to circles

binary classifica-
tion by ANNs

paths in
labelled graphs

minimize overlap
between spheres

Five groups (+ two from topic 4)
15th December, 10.00 – 13.50

Two groups (+ five from topic 1)
15th December, 10.00 – 13.50

Six groups
1st December, 10.30 – 13.50

Six groups
8th December, 10.30 – 13.50

39th November 2022INF205

Numerical recipes1, 2, … (1985–2007)

1http://numerical.recipes/
2W. H. Press et al., Numerical Recipes in C++, 2nd edn., Cambridge Univ. Press (ISBN 978-0-521-75033-2), 2002.

http://numerical.recipes/

49th November 2022INF205

Remark about grading

The INF205 grade will in all cases be measured by the same criteria/”aspects”.
The grade must correspond to competencies in the INF205 subject matter.

Knowledge about algorithms and theories related to the specific topics is
interesting and will help us all have interesting discussions and learn together.
And hopefully there are some synergies with your other modules and projects.

But in-depth theoretical understanding of the topic will not improve your
grade. For that, what matters is that you demonstrate that …

– … you can write clean, readable, object-oriented programs in C++,
– … you can handle memory access and allocation/deallocation safely,
– … you take time and memory efficiency considerations into account,
– … you can exploit parallel/distributed resources, e.g., with MPI or ROS.

INF205 9th November 2022

Digitalisering på Ås

Institutt for datavitskap

4 C++ basics

4.1 Pixels to circular disks

69th November 2022INF205

Circular disk vector for a b/w bitmap

0 0 0 0 0 0 255 255 255 255 255 255 255 255 255 0

0 0 0 0 0 255 255 255 255 255 255 255 255 255 255 255

0 0 0 0 0 255 255 255 255 255 255 255 255 255 255 255

0 0 0 0 0 255 255 255 255 255 255 255 255 255 255 255

0 0 0 0 255 255 255 255 255 255 255 255 255 255 255 255

0 0 0 0 0 255 255 255 255 255 255 255 255 255 255 255

0 0 0 0 0 255 255 255 255 255 255 255 255 255 255 255

0 0 0 0 0 255 255 255 255 255 255 255 255 255 255 255

0 0 0 0 0 0 255 255 255 255 255 255 255 255 255 0

0 0 0 0 0 0 0 255 255 255 255 255 255 255 0 0

0 0 0 0 0 0 0 0 0 0 255 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Black background

“white”, r=6,at (10, 4)

unsigned char DiskVector::get_pixel(
 int x, int y
) const
{
 char colour = background;
 for(auto i = disks.begin(); i !=disks.end(); i++)
 {
 float dd = (x - i->x)*(x – i->x)

+ (y - i->y)*(y - i->y);
 if(i->r * i->r >= dd) colour = i->colour;
 }
 return colour;
}

disks-to-pixels example

79th November 2022INF205

Circular disk vector for a b/w bitmap

0 0 0 0 0 0 0 0 255 255 255 255 255 255 255 0

0 0 0 0 0 0 0 0 0 255 255 255 255 255 255 255

0 0 0 0 0 0 0 0 0 255 255 255 255 255 255 255

0 0 0 0 0 0 0 0 0 255 255 255 255 255 255 255

0 0 0 0 0 0 0 0 0 0 255 255 255 255 255 255

0 0 0 0 0 0 0 0 255 255 0 255 255 255 255 255

0 0 0 0 0 0 255 255 0 0 0 0 0 255 255 255

0 0 0 0 0 0 255 0 0 0 0 0 0 0 255 255

0 0 0 0 255 255 255 0 0 0 0 0 0 0 255 0

0 0 255 255 255 255 0 0 0 0 0 0 0 0 0 0

0 255 255 255 255 255 255 0 0 0 0 0 0 0 255 0

0 255 255 255 255 255 255 0 0 0 0 0 0 0 255 0

255 255 255 255 255 255 255 255 0 0 0 0 0 255 255 255

0 255 255 255 255 255 255 255 255 255 0 255 255 255 255 0

0 255 255 255 255 255 255 255 255 255 255 255 255 255 255 0

0 0 255 255 255 255 255 0 0 255 255 255 255 255 0 0

Black background

“white”, r=6,at (10, 4)

“black”, r=5,at (4, 4)

“white”, r=4,at (11, 12)

“white”, r=4,at (4, 12)

“white”, r=3,at (8, 8)

“black”, r=4, at (10, 9)

89th November 2022INF205

“They’re the same picture”

0 0 0 0 0 0 0 0 255 255 255 255 255 255 255 0

0 0 0 0 0 0 0 0 0 255 255 255 255 255 255 255

0 0 0 0 0 0 0 0 0 255 255 255 255 255 255 255

0 0 0 0 0 0 0 0 0 255 255 255 255 255 255 255

0 0 0 0 0 0 0 0 0 0 255 255 255 255 255 255

0 0 0 0 0 0 0 0 255 255 0 255 255 255 255 255

0 0 0 0 0 0 255 255 0 0 0 0 0 255 255 255

0 0 0 0 0 0 255 0 0 0 0 0 0 0 255 255

0 0 0 0 255 255 255 0 0 0 0 0 0 0 255 0

0 0 255 255 255 255 0 0 0 0 0 0 0 0 0 0

0 255 255 255 255 255 255 0 0 0 0 0 0 0 255 0

0 255 255 255 255 255 255 0 0 0 0 0 0 0 255 0

255 255 255 255 255 255 255 255 0 0 0 0 0 255 255 255

0 255 255 255 255 255 255 255 255 255 0 255 255 255 255 0

0 255 255 255 255 255 255 255 255 255 255 255 255 255 255 0

0 0 255 255 255 255 255 0 0 255 255 255 255 255 0 0

16 x 16 b/w values 6 x 3 floats
and 7 b/w values

could be 32 byte
could be 73 byte

99th November 2022INF205

Variants of the problem

– What if we allow the vector-graphics outcome to not only have black-
and-white values, but values from 0 to 255 that can be interpreted …

– as greyscale values, and we aim to minimize square deviations;
– or as a probability (prediction) for black/white, like for topic 4.

– Or if the disks are not completely covering what is below, but combine
additively, or with a transparency degree, giving us another parameter.

– They might then also not contribute a constant value to the colour in the
compressed image, but with a gradient, decreasing from inside out.

– If we do any of the above, the original pixel graphics might just as well
also be a greyscale image, or it could even be an RGB pixel image.

– Then problem can then even be given a physical interpretation; more
so if we think of a potential generalization from 2D to 3D: Then it can be
applied to represent a charge distribution by a set of point charges.

INF205 9th November 2022

Digitalisering på Ås

Institutt for datavitskap

4 Production

4.1 Image compression topic
4.2 Subgraph matching

119th November 2022INF205

Suggested topic formulation

Given a graph g and pair of edge-label sequences (p, q), decide whether
there is a pair of nodes (m, n) in g such that m is connected to n via a path out
of edges labelled p[0], p[1], …, and by a path of edges labelled q[0], q[1], …

m n

Are we considering directed or undirected graphs? For the standard use case,
directed graphs are typical. So it could make sense to choose directed graphs.

What if the pattern occurs many times in the graph? It is formulated as a yes-no
question (decision problem). In reality, we could be interested in all matches.

a
b c

d

e
f

g

p = {a, b, c, d}

q = {e, f, g}

129th November 2022INF205

More questions and answers

If you have any additional concrete questions (also for any of the other topics),
we can keep expanding the Q&A material on the topic website.1

– Should the two paths have the same starting node? Yes.
– Is it the idea that the user provides the start node? No, we search it.
– Are the labels unique? Nodes have unique labels, and edges don’t.
– Can the same node occur in both paths? Yes.
– What realistic queries are there that take the form of sequences p and q?

• “What inventors were killed by their own invention?”3

• "What products are of the same colour as their packaging?"
• “What ministers had children who became ministers of the same country?"3

– How about parsing the graph data? (Let us look at the example code.2)

You can deviate from the “recommended” version and vary the problem a little.

1https://home.bawue.de/~horsch/teaching/inf205/project/paths-in-graphs_q-and-a.html
2That code is an adaptation of the example from Stroustrup (2018), Section 10.5, p. 128.
3See https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples/

https://home.bawue.de/~horsch/teaching/inf205/project/paths-in-graphs_q-and-a.html
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples/

139th November 2022INF205

I/O graph input example
bool Graph::generate_edge_from(std::istream* source) {
 char single_symbol = '\0';

 // read label of the first node
 std::string a_label = "";
 while(single_symbol != '<') *source >> single_symbol; // proceed until ‘<’
 for(*source >> single_symbol; single_symbol != '>'; *source >> single_symbol) a_label += single_symbol;

 if(node_a_label == "") return false; // format: empty label means that we are done

 // read string-type edge label
 std::string e_label = "";
 while(single_symbol != '<') *source >> single_symbol; // proceed until ‘<’
 for(*source >> single_symbol; single_symbol != '>'; *source >> single_symbol) e_label += single_symbol;

 // read label of the second node
 std::string b_label = "";
 while(single_symbol != '<') *source >> single_symbol; // proceed until ‘<’
 for(*source >> single_symbol; single_symbol != '>'; *source >> single_symbol) b_label += single_symbol;

 this->create_edge(a_label, e_label, b_label);
 return true;
}

void Graph::in(std::istream* source) {
 // read edge by edge
 while(this->generate_edge_from(source)) { }
}

 // read int-type edge label
 int edge_label = 0;
 *source >> edge_label;

149th November 2022INF205

contains_section

processor

applies_to

has_aspect
has_aspect_

object_content

use_case

material

material_information

Subgraph matching problem (NP-complete):

Given a graph G and a pattern H, does G contain a subgraph isomorphic to H?

pattern H

i α
m o g u

s
w

s
m s m s’

r
1

τ
2

r
2

τ
3

r
3

α
12

α
22

α
23

α
33

applies_to

applies_to

has_aspect_
object_content

has_aspect

hreshreshreshres

hres

hap hap
hap hap

hap

hcv

hcv

hcv

hcv

hcv
hcv

hli hli
hlo hlo

contains_section

contains_
section

hsvhsv

hsv

hsv hli

logical_read_access logical_read_accesslogical_write_access logical_write_access

logical_
resource

logical_
resource

pro-
cessor

solver

logical_
resource

logical_
structure

logical_
structure

logical_
structure

materials_
model

logical_
structure

material_
information

logical_read_access material

use_case

workflow_graph

graph G

(example from P. Klein et al., Proceedings of JOWO 2021)

Subgraph matching as querying

159th November 2022INF205

Triples as building blocks

Semantic technology can facilitate the integration of data and software into a
coherent framework. Ontologies characterize individuals (i.e., objects), the
concepts (i.e., classes) to which they belong, the possible relations between
them, and applicable restrictions (rules).

Triples: Individual Relation Individual. (Subject Predicate Object.)

Example: theFox eats theChicken.

– Resource description framework (RDF): Formalism for specifying triples.

– Web ontology language (OWL): Formalism for specifying ontologies,
including rules that can be processed by automated reasoning.

– Terse triple language (TTL): Syntax for denoting triples from RDF and OWL.

169th November 2022INF205

Knowledge graphs out of triples

:CERTIFICATE a vivo:certificate;
 vivo:states_assessment :ASSESSMENT;
 vivo:has_certifier :CERTIFIER.

:ASSESSMENT a vivo:model_assessment,
 vivo:accuracy_assessment;
 vivo:evaluates_model :MODEL;
 vivo:has_accuracy_assertion :ASSERTION.

:ASSERTION a vivo:relative_deviation;
 vivo:refers_to_property :SPEED_OF_SOUND;
 vivo:refers_to_material :ISOPROPANOL.
 vivo:has_deviation_magnitude 0.05.

:CERTIFIER a vico:certifier.

:ISOPROPANOL
 a osmo:ec_listed_material;
 osmo:has_ec_number "200-661-7".

:SPEED_OF_SOUND
 a osmo:physical_variable;
 vivo:is_quantity_kind
 qudt-qk:SpeedOfSound.

:MODEL a osmo:materials_model.

has_certifier

states_assessment

evaluates_model

has_accuracy_assertionrefers_to_material

refers_to_
property

179th November 2022INF205

Querying a knowledge base: SPARQL

SELECT ?x ?y … WHERE {sequence of triples involving ?x, ?y, …}

SELECT ?magnitude ?unit
WHERE {
 ?iri rdf:type :pair_variable.
 ?iri :has_elementary_value ?elval.
 ?elval :is_decimal ?magnitude.
 ?iri :has_variable_unit ?unit.
}

?iri ?elval

?magnitude?unit

pair_variable

has_
elementary_

value
is_decimal

has_
variable_

unit

Observation: The WHERE clause consists of RDF triples with free variables.

1W3C recommendation, https://www.w3.org/TR/sparql11-query/, 2013.

selected free variables
there can be additional

(non-selected) free variables
graph pattern

https://www.w3.org/TR/sparql11-query/

189th November 2022INF205

SPARQL query examples

Web front end: https://query.wikidata.org/

many examples for SPARQL queries against Wikidata are available at
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples

@prefix wd: <https://wikidata.org/wiki/>
(used for individuals and concepts)

@prefix wdt: <https://wikidata.org/wiki/Property:>
(used for relations)

https://query.wikidata.org/
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples

199th November 2022INF205

Simple graph traversal algorithms

Traversal of trees and graphs: Depth-first search and breadth-first search

depth-first search (DFS)

0

12

3 4

5

67

8

9

0

1

2

3

4

5

7

9

8

6

begin
here

breadth-first search (BFS)

begin
here

DFS always proceeds from the most recently detected node (LIFO).
BFS always proceeds from the node that was detected earliest (FIFO).

Note: Only elements to which there is a path from the initial node can be found.

209th November 2022INF205

Variants of the problem

Other interpretations of the labels or queries:
– Instead of sequences of labels, permit sequences of sets of labels
– … or allow p and q to be regular expressions
– Include some reasoning (e.g., about how distant nodes are connected)
– Numerical labels, the elements of p and q are constraints on labels

Consider other types of queries, given by other graph patterns:
– Search for patterns that are frequent,1 but still comparably simple
– More complex patterns make the query NP-complete;
– but libraries and algorithms from the literature2 might be employed

Require distinct nodes/edges, but forget about labels, just checking the shape.

1https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples/
2L. Kothoff et al., in Proc. LION 2016, pp. 107–122, doi:10.1007/978-3-319-50349-3_8, 2016.

https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples/
https://dx.doi.org/10.1007/978-3-319-50349-3_8

INF205 9th November 2022

Digitalisering på Ås

Institutt for datavitskap

4 Production

4.1 Image compression topic
4.2 Subgraph matching
4.3 Groups 2 and 26

229th November 2022INF205

Neural network parameterization

Solving a binary classification problem by an artificial neural network (ANN).
Based on statement from group 26:

– Input: An m x n matrix.
– Output: A parameterization of the neural network and a vector of

probability values generated by that network.

Based on steps formulated by group 2:

– Implement a perceptron that can be parameterized/trained.
– Connect perceptrons as a feed-forward net with back-propagation.
– Consider concurrency/parallelization.

As an application, the ANN could be a compressed representation of a black-
white image. It could even better be used to represent a sequence of images.

INF205 9th November 2022

Digitalisering på Ås

Institutt for datavitskap

4 Production

4.1 Image compression topic
4.2 Subgraph matching
4.3 Groups 2 and 26
4.4 Hard spheres

249th November 2022INF205

Standard version of the problem

N spheres of different types (with different radii) are positioned in a 3D system.

Evaluate the number of overlaps.

Rearrange the spheres to make the
number of overlaps as small as you
can achieve it.

With a low packing fraction (density),
this is simple. But it becomes a hard
problem with many spheres and a
very high packing fraction.Why is this a challenging optimization

problem? Why can naive methods fail
in general – in what case can they fail?

What is the dimension of the
configuration space for N spheres?
How many values can we vary?

259th November 2022INF205

Box conventions: PBC + MIC

Periodic boundary condition (PBC) Minimum image convention (MIC)

0
1

2

3
4

0’

4’

interact, count for potential (e.g., overlaps)
interact, don’t count for potential
don’t interact

PBC: Assume that the simulation box
repeats periodically in all directions.

MIC: Each particle interacts only with
closest replica of each other particle.

269th November 2022INF205

Example code (pbc-mic)

Periodic boundary condition (PBC)

Apply modulo(-like) logic, using the
box size as the modulo:

// now read all the particles
for(size_t i = 0; i < num_part_comp; i++)
{
 // read the coordinates
 double x[3];
 for(int d = 0; d < 3; d++)
 {
 *source >> x[d];

 // apply periodic boundary condition
 if(x[d] < 0.0) x[d] += this->extension[d];
 else if(x[d] > this->extension[d]) x[d] -= this->extension[d];
 }
 …
}

4 4 4

1 1.5
0 1 1

7 1
0 0 0
0 0 5
0 1 0
1 0 0
1 0 1
1 1 0
1 1 1

1 2
0 3 -1

0

box size

next, read one
particle with
diameter 1.5

end-of-file
token

read as
(0/3/3)

read as
(0/0/1)

1. For configuration I/O
2. Whenever particles move

279th November 2022INF205

Example code (pbc-mic)
Minimum image convention (MIC)bool Sphere::check_collision(

 const Sphere* other, const double box_size[3]
) const
{
 // square distance between “this” and “other”
 double square_distance = 0.0;
 for(int d = 0; d < 3; d++)
 {
 double dist_d = other->coords[d] - this->coords[d];

 // apply minimum image convention
 if(dist_d > 0.5*box_size[d]) dist_d -= box_size[d];
 else if(dist_d < -0.5*box_size[d]) dist_d += box_size[d];

 square_distance += dist_d*dist_d;
 }
 double sum_of_radii = 0.5 * (this->size + other->size);
 return (square_distance < sum_of_radii*sum_of_radii);
}

– box_size[0]

+ box_size[1]

289th November 2022INF205

Variants of the problem

The boundary conditions or potential could be varied, e.g., as follows:
– Instead of PBC, use hard walls in one or multiple spatial directions
– Or a spherical box (surrounded by a hard wall1), instead of a cuboid
– Non-spherical particles, or multi-centre particles
– More physically relevant interactions with attraction and repulsion

Solution techniques/algorithms, from simple to very advanced, may include:
– Monte Carlo (MC) method

• In Numerical Recipes 2nd edn.,2 see Sections 7.6 and 7.8

– simulated annealing (MC with varying temperature)
• In Numerical Recipes 2nd edn.,2 see Section 10.9

– Other global optimization techniques for complex problems
• Population-based methods such as evolutionary algorithms
• Biased sampling methods

Dynamic simulation, integrating the classical mechanical equations of motion.

2W. H. Press et al., Numerical Recipes in C++, 2nd edn., Cambridge Univ. Press (ISBN 978-0-521-75033-2), 2002.

1I. Urrutia, “Bending rigidity and higher […],” Phys. Rev. E 89: 032122, arXiv:1311.5176 [cond-mat.soft], 2014.

https://arxiv.org/abs/1311.5176

INF205 9th November 2022

Digitalisering på Ås

Institutt for datavitskap

Conclusion

pixels to circles

binary classifica-
tion by ANNs

paths in
labelled graphs

minimize overlap
between spheres

Five groups (+ two from topic 4)
15th December, 10.00 – 13.50

Two groups (+ five from topic 1)
15th December, 10.00 – 13.50

Six groups
1st December, 10.30 – 13.50

Six groups
8th December, 10.30 – 13.50

INF205 9th November 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Production

4.1 Image compression topic
4.2 Subgraph matching
4.3 Groups 2 and 26
4.4 Hard spheres

