
INF205 16th November 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Production

4.5 ”#define” macros
4.6 Shared libraries
4.7 Benchmarks
4.8 CMake

INF205 16th November 2022

Digitalisering på Ås

Institutt for datavitskap

4 Production

4.5 ”#define” macros

316th November 2022INF205

“#define” macros

We have been using the preprocessor directive “#define” to protect headers:

#ifndef HEADER_NAME_H
#define HEADER_NAME_H

… // content of the header

#endif

This particular use is still recommended.

Other uses of #define are seen very frequently
in legacy code and projects that have existed
for a long time … such as many libraries!

The C/C++ preprocessor accepts defines both as directives or, equivalently,
by define flags passed through the compiler, e.g.:

g++ -DNDEBUG -DPARAM=7 -c -o object_file.o code_file.cpp

The “NDEBUG” define also deactivates “assert” and a few other constructions.

416th November 2022INF205

Case distinctions using macros

C/C++ preprocessor directives are a programming language in its own right.

#ifdef SOME_CONSTANT
 // here comes some code
#else
 // alternative solution
#endif

Overusing preprocessor directives makes code hard to debug and maintain!

Features that are turned on through -D… directives can interact in unforeseen
ways. If there are n options, we would need to test 2n versions of the code.

If it does not cost much in performance, make case distinctions at runtime.

Where possible, better use a template rather than a #define. In the future,
generic programming will make template-like constructions more powerful.

Exercise

Use macros for a sequential version of
the MPI-parallel primes counting code

from the same single code base.

516th November 2022INF205

Case distinctions using macros

…
#ifdef USE_MPI
#include <mpi.h>
#endif
…
int main(int argc, char** argv)
{
 …
#ifdef USE_MPI
 MPI_Init(&argc, &argv);

 int size = 0;
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int rank = 0;
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
#else
 int size = 1;
 int rank = 0;
#endif

 int64_t limit = std::atoi(argv[1]);
 …
 int64_t counted_primes = 0;

 for(int64_t n = 6*(rank+1) - 1; n < limit; n += 6*size)
 if(is_prime(n)) counted_primes++;

 for(int64_t n = 6*(rank+1) + 1; n < limit; n += 6*size)
 if(is_prime(n)) counted_primes++;

 int64_t overall_primes = 0;

#ifdef USE_MPI
 MPI_Reduce(&counted_primes, &overall_primes, …);
 if(!rank) overall_primes += 2;
 MPI_Finalize();
#else
 overall_primes = counted_primes + 2;
#endif
 …
}

616th November 2022INF205

Style advice on #define macros

– ES.32: Use ALL_CAPS for all macro names
– ES.33: If you must use macros, give them unique names

#define MYCHAR /* BAD, will eventually clash with someone else's MYCHAR*/

#define ZCORP_CHAR /* Still evil, but less likely to clash */
(from Core Guidelines)

(“Example, bad”, from Core Guidelines)

– SF.8: Use #include guards for all header files

– ES.30: Don’t use macros for program text manipulation
– ES.31: Don’t use macros for constants or “functions”

Core guidelines about defines:

#define PI 3.14
#define SQUARE(a, b) (a * b)

#define NAME
#define NAME value

is equivalent to
is equivalent to

g++ -DNAME
g++ -DNAME=value

INF205 16th November 2022

Digitalisering på Ås

Institutt for datavitskap

4 Production

4.5 ”#define” macros
4.6 Shared libraries

816th November 2022INF205

Shared libraries

In programming with C/C++ libraries, we have already seen:
– How to work with the C standard library, e.g., <cassert>, <cmath>, …
– … with the C++ standard library, with the STL, OpenMPI, and ROS

Technically, libraries are pre-compiled object code that can be reused.

The library needs to be accessed at three stages:
– At compile time, we need to include the library headers.

• The complete source code for the libraries is unnecessary.
It is even possible for the library to be coded in another language.

– During linking, the object code is dynamically linked against the library.
• At this stage, the library “static object” (*.so file) is needed.
• The executable does not contain the library’s object code!

– At execution time, the executable and the library are loaded jointly.
• If the library’s static object code is gone now, the code will not run!

916th November 2022INF205

Library use example

1Magick++ API documentation: https://imagemagick.org/Magick++/Documentation.html
2Magick++ Tutorial: https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

The image-benchmark code uses the Magick++ API of ImageMagick.1, 2

int main(int argc, char** argv)
{
 // charmap input
 std::ifstream pixistrm(argv[1]);
 diskgraphics::Charmap cm;
 pixistrm >> cm;
 pixistrm.close();

 // image object setup
 Magick::InitializeMagick(*argv);
 Magick::Image img(Magick::Geometry(cm.get_sizex(), cm.get_sizey()), "white");
 img.magick("BMP");
 img.monochrome();
 img.type(Magick::BilevelType);

 // pixel-by-pixel transfer of content
 for(int x = 0; x < cm.get_sizex(); x++)
 for(int y = 0; y < cm.get_sizey(); y++)
 img.pixelColor(x, y, Magick::Color(cm.get_pixel(x, y) == 0? "black": "white"));

 // output in BMP format using one bit per pixel
 img.quantize(2);
 img.write(argv[2]);
}

read a “Charmap” object from a pixel
graphics file, using last week’s file format

ImageMagick can deal with
many file formats; we need
an uncompressed pixel
graphics format such as BMP

copy colour value of pixels

with quantize(2) we get one bit per pixel

#include <Magick++.h>

https://imagemagick.org/Magick++/Documentation.html
https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

1016th November 2022INF205

Library use: Compiling and linking

1Magick++ API documentation: https://imagemagick.org/Magick++/Documentation.html
2Magick++ Tutorial: https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

The image-benchmark code uses the Magick++ API of ImageMagick.1, 2

#include <Magick++.h>

For this particular library, there is a tool that helps call g++ with the right flags:

How does the compiler know
where to look for this file?

More typically, you need to provide this information to the compiler by hand.

g++ -c -std=c++17 -o <name>.o <name>.cpp `Magick++-config --cppflags`

-fopenmp -DMAGICKCORE_HDRI_ENABLE=1
-DMAGICKCORE_QUANTUM_DEPTH=16 -I/usr/local/include/ImageMagick-7

g++ -std=c++17 -o <name> *.o `Magick++-config --libs`

-L/usr/local/lib -lMagick++-7.Q16HDRI -lMagickWand-7.Q16HDRI -lMagickCore-7.Q16HDRI

https://imagemagick.org/Magick++/Documentation.html
https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

1116th November 2022INF205

Library programming

A shared object can be created from an object file using g++ -shared:

g++ -c -o first.o first.cpp
g++ -c -o second.o second.cpp
g++ -shared -o libname.so first.o second.o

The library header location can be passed to g++ at compile time with -I…,
and the shared object is found by the linker with the -L and -l options.

this is a capital i,
not a lower-case L

this time it is a
lower-case L

But the library also needs to be found at execution time.
For that to work, it must be in the appropriate path, or
one of the environment variables for library paths must
be set to include the location of the shared object.

this can be
$LD_LIBRARY_PATH

INF205 16th November 2022

Digitalisering på Ås

Institutt for datavitskap

4 Production

4.5 ”#define” macros
4.6 Shared libraries
4.7 Benchmarks

1316th November 2022INF205

Role of the benchmarks

What are our benchmarks like?
– The benchmark is not a single input file. It is an input file generator.
– The problem size is controlled through one or multiple parameters.

What to do with the benchmark:
– Record average runtimes, maybe worst-case runtimes, on a single core
– Use it to conduct weak scaling tests in parallel

(weak scaling: the problem size increases with the number of cores)

What not to do with the benchmark:
– The program should not assume that it only receives benchmark input:

It should work for the problem in general.
– The benchmark is there so you can document how your code performs

and scales. If you tailor the code so specifically to the benchmark that it
becomes worse (or incorrect) overall, it has failed its purpose.

1416th November 2022INF205

Benchmark scenario: Disk graphics

See image-benchmark generator code. Main scenario parameter:

– Graphics edge size a, in pixels, so that the figure has a2 pixels

Additional benchmark scenario parameter (change only if you have a reason):

– number of disks m from which the figures are generated; default: m = 10

 float disk_radius = a;
 unsigned char disk_colour = 0;
 for(int i = 0; i < m; i++) {
 diskgraphics::Disk dsk;
 disk_radius /= 1.125 + 0.125*rand()/(float)RAND_MAX;

 dsk.x = a * (0.75*(rand()/(float)RAND_MAX) + 0.125);
 dsk.y = a * (0.75*(rand()/(float)RAND_MAX) + 0.125);
 dsk.r = disk_radius;
 dsk.colour = disk_colour;
 dv.add_disk(dsk);

 if(std::rand() > RAND_MAX/3.0) disk_colour = 255 - disk_colour;
 }

./generator (from generator.cpp)
creates a disk vector with m disks
and the figure in charmap format.

./bitmap (from bitmap.cpp) uses
Magick++ from ImageMagick to
convert charmaps to BMP format.

1516th November 2022INF205

Benchmark scenario: Disk graphics
benchmark.bmp file

Terminal output of ./generator 32 && ./bitmap

BMP and VCT files about the same size.

1616th November 2022INF205

Benchmark scenario: Disk graphics

4x4 pixels 16x16 pixels 64x64 pixels 256x256 pixels 1024x1024 pixels

146 byte BMP 192 byte BMP 642 byte BMP 8.1 KB BMP 128 KB BMP

A series of figures is uploaded as disk-benchmark-series.zip, including these:

1716th November 2022INF205

Benchmark scenario: ANN

Use the ANN as a compressed representation of multiple benchmark figures.

1816th November 2022INF205

Benchmark scenario: Graph queries

See graph-benchmark generator code. Two main scenario parameters:

– Graph size n, the number of nodes in the graph (not number of edges)
– Query size m, length of each of the two paths from the query

r0

p = {r0, r2, r4, r6}

q = {r1, r3, r5, r7}

Benchmark query pattern for m = 4

<r0> <r2> <r4> <r6> <>
<r1> <r3> <r5> <r7> <>

r2 r4
r6

r1
r3 r5

r7

query.dat output file

Random graphs are generated such that both cases with and without an
instance of the graph pattern occur (the aim was to approximate a 50:50 ratio).

1916th November 2022INF205

Benchmark scenario: Graph queries

Random benchmark graph from “./generate-graph 15 4 kb.dat query.dat”:

n0

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

The benchmark graphs consist of m+1 partitions. Assuming that n and m grow
in proportion, the number of edges is in O(n), generating sparse graphs.

r0
r2

r4 r6r0 r2

r2

r2

r2

r4

r6

r6

r6

r1

r1

r1

r1

r1

r3

r3r3

r5

r5

r7

r7

r5

r5

r5

r7

r7

<n0> <r1> <n3>
<n0> <r1> <n4>
<n1> <r0> <n3>
<n1> <r1> <n4>
<n1> <r0> <n5>
<n1> <r1> <n5>
<n2> <r1> <n5>

<n3> <r2> <n6>
<n3> <r2> <n7>
<n3> <r3> <n7>
<n3> <r2> <n8>
<n4> <r2> <n6>
<n4> <r3> <n6>
<n5> <r2> <n6>
<n5> <r3> <n7>

<n6> <r5> <n9>
<n6> <r4> <n10>
<n6> <r5> <n10>
<n7> <r5> <n10>
<n7> <r4> <n11>
<n7> <r5> <n11>
<n8> <r5> <n11>

<n9> <r6> <n12>
<n9> <r7> <n12>
<n10> <r7> <n12>
<n10> <r6> <n13>
<n10> <r7> <n14>
<n11> <r6> <n12>
<n11> <r7> <n12>
<n11> <r6> <n13>

kb.dat
output file

<>

2016th November 2022INF205

Benchmark scenario: Sphere overlap

See sphere-benchmark generator code. Main scenario parameter:

– N, the number of spherical particles in the system

Additional benchmark scenario parameters (change only if you have a reason):

– packing fraction ξ, i.e., total sphere volume / box volume; default: ξ = 7/9

– ratio ζmax between largest and smallest sphere diameter; default: ζ = 10/3

Remark: If the spheres are
all of the same size, the
densest packing (without
any overlaps) has the
packing fraction 0.7405.

This had been known as one
of the “Hilbert problems.”

T. C. Hales, “A proof of the Kepler
conjecture,” Ann. Math. 162(3):
1065–1185, doi:10.4007/annals.

2005.162.1065, 2005.

https://doi.org/10.4007/annals.2005.162.1065
https://doi.org/10.4007/annals.2005.162.1065

2116th November 2022INF205

Benchmark scenario: Sphere overlap

particle number N: 256
packing fraction: 0.777778
output file name: benchmark-configuration.dat
max. size ratio: 3.33333

generating 005 spheres with diameter 3.33333 (occupied volume: 096.9627)
generating 002 spheres with diameter 2.33333 (occupied volume: 013.3033)
generating 122 spheres with diameter 1.33333 (occupied volume: 151.4170)
generating 127 spheres with diameter 1.00000 (occupied volume: 066.4970)

occupied volume: 328.18
volume of the box: 421.946
size of the box: 007.50042

example output from ./generator 256

Proposal that avoids boring
solutions from “stacking” of
spheres (placing ≥2 spheres
at the same coordinates):

See implementation in sphere-benchmark, sphere.cpp, line 51.

dist(i, j) ≥ (σi + σj)/2 dist(i, j) < (σi + σj)/4anything in between

one overlapno overlap counts as eight

2216th November 2022INF205

Benchmark scenario: Sphere overlap

See implementation in sphere-benchmark, sphere.cpp, line 51.

dist(i, j) ≥ (σi + σj)/2 dist(i, j) < (σi + σj)/4anything in between

one overlapno overlap counts as eight

int Sphere::check_overlap(const Sphere* other, const double box_size[3]) const
{
 // square distance between the centre of i and the centre of j
 double square_distance = 0.0;
 for(int d = 0; d < 3; d++) {
 double dist_d = other->coords[d] - this->coords[d];

 // apply minimum image convention
 if(dist_d > 0.5*box_size[d]) dist_d -= box_size[d];
 else if(dist_d < -0.5*box_size[d]) dist_d += box_size[d];

 square_distance += dist_d*dist_d;
 }

 // is the square distance smaller than the square of the sum of radii?
 double sum_of_radii = 0.5 * (this->size + other->size);
 int overlap = 0;
 if(square_distance < 0.25*sum_of_radii*sum_of_radii) overlap = 8; // soft shielding
 else if(square_distance < sum_of_radii*sum_of_radii) overlap = 1; // normal overlap
 return overlap;
}

rij

uij

σij /2 σij

1

8

σij = (σi + σj)/2
“Lorentz mixing rule”

pair potential

INF205 16th November 2022

Digitalisering på Ås

Institutt for datavitskap

4 Production

4.5 ”#define” macros
4.6 Shared libraries
4.7 Benchmarks
4.8 CMake

2416th November 2022INF205

Generating makefiles using CMake

CMake can be helpful if your project has a complex system of dependencies,
or compile-time case distinctions are needed beyond what you can implement
in a simple way using GNU make; e.g., embedded system cross-compiling.

CMake is used by many complex C/C++ projects that require developers or
users to compile code on their systems, which may be very diverse. Typically:

cmake . && make && sudo make install

There, CMake generates the Makefile that is then used by GNU make.
We have done this before when we looked into the C++ interface to ROS.

Instructions for CMake are communicated through a file called CMakeLists.txt.

– CMake documentation: https://cmake.org/cmake/help/latest/

– CMake tutorial: https://cmake.org/cmake/help/latest/guide/tutorial/

https://cmake.org/cmake/help/latest/
https://cmake.org/cmake/help/latest/guide/tutorial/

2516th November 2022INF205

CMakeLists.txt commands

Create a simple CMake project

– Copy the “directed-graph” code into the
subdirectory ./src of some working folder.

– Remove the original Makefile.
– Write CMakeLists.txt (see commands1) in

the main folder and in the ./src folder.
– Calling “cmake .” in the main working

folder generates Makefiles in both folders.

1See: https://cmake.org/cmake/help/latest/manual/cmake-commands.7.html

set(EXECUTABLE_OUTPUT_PATH ../bin)
add_executable(dirgraph graph.cpp query.cpp run-graph.cpp)

(cmake-dirgraph): cmake_minimum_required(
 VERSION 3.14
)
project(
 dirgraph
 VERSION 1.0.0
 LANGUAGES CXX
)
set(AUTHOR "Martin Horsch")
set(CMAKE_CXX_STANDARD 17)
add_subdirectory(src)

Now make will automatically call g++ with the right options and flags.

src/CMakeLists.txt

./CMakeLists.txt

https://cmake.org/cmake/help/latest/manual/cmake-commands.7.html

2616th November 2022INF205

CMake support for unit tests

Unit tests are generally a helpful debugging tool in complex development
projects. Here they can also help the user verify that everything worked well.

enable_testing()
add_test(
 NAME example_graph
 COMMAND dirgraph kb.dat query.dat
 WORKING_DIRECTORY data
)
set_tests_properties(
 example_graph
 PROPERTIES
 PASS_REGULAR_EXPRESSION "<INF200 2022H>[\t\r\n]*<Rune Grønnevik>"
 PASS_REGULAR_EXPRESSION "<INF205 2023H>[\t\r\n]*<Trine Næss Henriksen>"
 PASS_REGULAR_EXPRESSION "<KJM230 2023V>[\t\r\n]*<Heidi Rudi>"
)

https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html#test-properties

CMakeLists.txt (cmake-dirgraph)

^ Matches at beginning of input
. Matches any single character
[Xy2] Any of the characters X, y, or 2
[^vV] Any character other than v or V
[C-F] Any of the characters C, D, E, or F
* Preceding pattern occurs >= 0 times
+ Preceding pattern occurs >= 1 time
? Optional (occurs 0 or 1 times)
| Disjunction ("or")

https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html#test-properties

2716th November 2022INF205

CMake GUI

Graphical interface to CMake: cmake-gui

INF205 16th November 2022

Digitalisering på Ås

Institutt for datavitskap

Conclusion

2916th November 2022INF205

Update: Presentation schedule

Thursday, 1st December 2022

Black-white images and binary classification problems

 10.00 – 10.20: Group #9
 10.30 – 10.50: Group #23
 11.00 – 11.20: Group #26

Graph querying: Paths and cycles in graphs

 12.00 – 12.20: Group #8
 12.30 – 12.50: Group #10
 13.00 – 13.20: Group #17
 13.30 – 13.50: Group #20

Friday, 9th December 2022

Various topics

 12.30 – 12.50: Group #2
 13.00 – 13.20: Group #3

Wednesday, 7th December 2022

Spherical particle configurations

 14.15 – 14.35: Group #1
 14.40 – 15.00: Group #6
 15.15 – 15.35: Group #12
 15.40 – 16.00: Group #19

Thursday, 15th December 2022

Various topics

 10.30 – 10.50: Group #4
 11.00 – 11.20: Group #5
 11.30 – 11.50: Group #7

Black-white images

 12.30 – 12.50: Group #13
 13.00 – 13.20: Group #16
 13.30 – 13.50: Group #25

INF205 16th November 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Production

4.5 ”#define” macros
4.6 Shared libraries
4.7 Benchmarks
4.8 CMake

