
INF205 23rd November 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

5 Parallel data

5.1 Domain decomposition
5.2 Linked cells
5.3 Message passing serialization
5.4 Parallel input/output

223rd November 2022INF205

Reuse of external code

Are you legally allowed to use the external code?
– You need a license; which is it? Check its terms and conditions.

• Some licenses, even if they allow you to reuse the code and create
derivative works, cannot be combined with each other.

• For example, the GPL and CC NC licenses cannot be combined.
• To alleviate this issue, libraries are often released under the LGPL.

How about the code examples from the INF205 lecture material?
– Released under the conditions of the CC BY-NC-SA 4.0 License.

Would it not be plagiarism or fraud to submit others’ material?
– It is, if you submit others’ developments as if they were your own.
– If it is not absolutely clear from your submission that you are reusing

somebody else’s work (when you actually are), it may be a fraud attempt.
– That is also the case for the lecture material; it must be clear also to the

second examiner, who is external, that it is others’ material being reused.

https://creativecommons.org/licenses/by-nc-sa/4.0/

323rd November 2022INF205

Reuse of external code (libraries)

Should we use external libraries, or should we develop all from scratch?

– It is one of the learning outcomes to work with external libraries.
– But we have seen that even the STL can be sometimes beaten by

simple bespoke code that you write yourself for a special purpose.
– With your project code you are meant to demonstrate what you have

learnt. Your own development must not be totally trivial.

If you use a library solution for something that can also be done in a simple
way by hand (and is roughly on scope for INF205), why not try out both an own
implementation and the library, comparing their performance?

But if you are reusing a complicated algorithm, data structure, or file format,
going beyond the content of INF205, and there is a library, just use the library!

Examples: Balanced trees, graphics formats, Fast Fourier Transform, …

423rd November 2022INF205

More questions about project work

Where do we find our Orion account/login data?

– You should have received them as a comment to week 43 group status.
– Your login name is inf205-22-xx, where xx is your group number.
– Login via ssh inf205-22-xx@login.orion.nmbu.no.
– Documentation available at https://orion.nmbu.no/.

– You must be on the VPN (https://na.nmbu.no/) to access any of these.

Almost final opportunity to clarify issues about the group projects at a
meeting where we are all together. What information is urgently needed?

What would we need to discuss together right now?

What is still unclear but might be clarified over the coming few days?

Makefiles not working under Windows:

– Sad but true. (That’s why production code does not come with a Makefile.)

https://orion.nmbu.no/
https://na.nmbu.no/

INF205 23rd November 2022

Digitalisering på Ås

Institutt for datavitskap

5 Parallel data

5.1 Decomposition schemes

623rd November 2022INF205

Concurrent Markov chains

A Markov chain is a sequence of states in a probabilistic discrete event system.

Different processes can explore the
huge space completely separate
from each other. All processes can
access the whole space – it is not
split up into subregions.

Some problems deal with stochastic exploration or sampling of a large space.

For example, in our problem with N spherical particles, we are exploring a 3N
dimensional configuration space. In such a case, Monte Carlo methods can
exploit concurrency from the fact that multiple Markov chains are independent.

1/3

1/3
2/3

2/3a b
abbabbbaaba …

start
ababbaaabba …

723rd November 2022INF205

Space-like concurrency in the data

Domain decomposition is characterized by two features:
First, parallelization is based on the concurrency inherent in (some) data.
Second, these data are seen as constituting a space, or as located in a space.

load weather
warnings for A0

A B C D

0

1

2

3

load current
plane positions

load weather
warnings for C1

load weather
warnings for D3

load weather
warnings for C2

…

…

warn planes in
A0 if needed

warn planes in
C1 if needed

warn planes in
D3 if needed

warn planes in
C2 if needed

…

…

Domain decomposition can be applied to each of the INF205 project topics!

823rd November 2022INF205

Example: Two-dimensional landscape

In the charmap-output example, generation of a random benchmark image is
parallelized by domain decomposition, dividing the square shape into stripes:

a·a pixel image

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

int ny = 1 + (a-1)/size;
int yoffset = rank*ny;
if(rank == size-1) ny = a - yoffset;

diskgraphics::Charmap cm(dv, 0, a, yoffset, ny);

round up a/size

Why is this better than
rounding down?

Each process allocates a rectangular character map (stripes, see above) and
computes only the corresponding pixel values from the vector of circular disks.

923rd November 2022INF205

Example: Three-dimensional box

global 3D system
containing all the
“original” versions

of the particles

one of the local boxes
into which the system is

divided for parallelization

halo region of the loxal box:
the process is not responsible

for this information, but
needs to know it

In the sphere-config-par example,
a 3D domain decomposition is
implemented:

 int remainder = rank;
 boxrank[0] = remainder /
 (boxes[1] * boxes[2]);
 remainder -= boxrank[0] *
 boxes[1] * boxes[2];
 boxrank[1] = remainder / boxes[2];
 remainder -= boxrank[1] * boxes[2];
 boxrank[2] = remainder;

subdomain from MPI rank:

1023rd November 2022INF205

Example: Three-dimensional box

Attention: For a single particle read in from the input file,
multiple copies can now exist in several ranks.
(In our implementation, these have the same particle ID.)

rank 0 (top left)
needs a version
of this particle

in its halo

rank 1 (top right)
has the main

responsibility for
the object

rank 3 (bottom right)
has a periodic copy of
the particle in its halo

rank 2 (bottom left)
has a periodic copy of
the particle in its halo

1. If an object is updated or moved, adjacent ranks may need to be informed.
2. Attention not to double-count objects, or pairs; see Box::count_overlaps().

2D representation

here just because

the slide is two-

dimensional

1123rd November 2022INF205

Example: Three-dimensional box

Let us do a straightforward performance test with 215 particles:

– Using the sequential version compiled from the same code base
• ./eval-seq 32768-particles.dat 3.334

– Using the parallel version, but with only one MPI rank
• mpirun -np 1 ./eval-par 32768-particles.dat 3.334 1 1 1

– Scale up to eight ranks, on the presentation laptop
• mpirun --oversubscribe -np 8 ./eval-par 32768-particles.dat 3.334 2 2 2

– Scale up to 18 ranks, on the presentation laptop
• mpirun --oversubscribe -np 18 ./eval-par 32768-particles.dat 3.334 3 3 2

We have looked into domain decomposition in detail. These methods all have
in common that the responsibility for the data items is split up in some space.

Discussion #2: What other kinds of decomposition schemes can you think of?

Discussion #1: How can we explain the observed behaviour?

INF205 23rd November 2022

Digitalisering på Ås

Institutt for datavitskap

5 Parallel data

5.1 Decomposition schemes
5.2 Linked cells

1323rd November 2022INF205

Linked cell data structure

Objective: Deal with interactions between objects that are close to each other
(“short-range interactions”) in a Cartesian space, without testing O(n2) pairs.

Idea: Divide an area or volume into interconnected cells, and sort interacting
objects into these cells according to their coordinates.

Assuming that the density of objects has an
upper bound to to the nature of the problem,
processing all interacting pairs is now in O(n)
instead of O(n2), once the objects are in cells.

Sequentially, with a single process, this works
just as well as in parallel. Being connected by
the same logic, it is very common to combine
linked cells with domain decomposition for
particle-based methods.

1423rd November 2022INF205

Linked cells + domain decomposition

http://www.ls1-mardyn.de/

212210282624222220

number of employed nodes of the cluster

weak scaling on SuperMUC

weak scaling

strong scaling

G
FL

O
P

/s
 p

er
 n

o
d

e

100

200

1W. Eckhardt, A. Heinecke, R. Bader, M. Brehm, N. Hammer, H. Huber,
 H.-G. Kleinhenz, J. Vrabec, H. Hasse, M. Horsch, M. Bernreuther, C. W. Glass,
 C. Niethammer, A. Bode & H.-J. Bungartz, Proc. ISC 2013, LNCS 7905, 1 – 12, 2013.

N = 4 125 000 000 000

2013 molecular dynamics world record1

SuperMUC
weak scaling

SuperMUC (Garching):
SandyBridge architecture

(large systems 1: molecular dynamics)

1523rd November 2022INF205

Linked cells + domain decomposition

1N. Tchipev, S. Seckler, M. Heinen, J. Vrabec, F. Gratl, M. Horsch, M. Bernreuther,
 C. W. Glass, C. Niethammer, N. Hammer, B. Krischok, M. Resch, D. Kranzlmüller,
 H. Hasse, H.-J. Bungartz, P. Neumann, Int. J. HPC Appl. 33(5), 838 – 854, 2019.

212210282624222220

number of employed nodes of the cluster

weak scaling on SuperMUC

weak scaling

strong scaling

G
FL

O
P

/s
 p

er
 n

o
d

e

100

200

(cores per node: 24 for Hazel Hen, 16 for SuperMUC)

N = 21 000 000 000 000

2019 molecular dynamics world record1

(weak scaling performance of 88% on 7168 nodes)

Hazel Hen
weak scaling

Hazel Hen (Stuttgart):
Haswell architecture

http://www.ls1-mardyn.de/ (large systems 1: molecular dynamics)

https://doi.org/10.1177/1094342018819741

INF205 23rd November 2022

Digitalisering på Ås

Institutt for datavitskap

5 Parallel data

5.1 Decomposition schemes
5.2 Linked cells
5.3 Message-passing serialization

1723rd November 2022INF205

The need for serialization of data

To transfer data through a communication channel as a message, the data
items and their parts need to be serialized (ordered) in a well-defined way that
is understood both by the sender and the receiver.

– As a file, if file I/O is the mechanism by which data are exchanged.
• We will have a look into parallel file I/O, using MPI-IO.

– As a contiguous chunk of memory, if the exchange is memory-based.
• In case of message-passing parallelization, this is a critical step!

The challenge:

– Going from procedural programming to OOP, we regrouped
elementary data items to become less well arranged for this purpose.

– Advanced dynamic data structures are not contiguous in memory.
– While an object technically has a fixed size in memory, the content of a

dynamic container object has variable size.

1823rd November 2022INF205

Serialization: Unwrap the data structure

struct Sphere {

 float size = 0.0;

 float coords[3] = {0.0, 0.0, 0.0};

};

int count_collisions(int N, Sphere spheres[]);

int main() {

 …

 cin >> N;

 Sphere* spheres = new Sphere[N]();

 …

 int result = count_collisions(N, spheres);

 …

}

int count_collisions(

 int N, float size[], float coordx[],

 float coordy[], float coordz[]

);

int main() {

 …

 cin >> N;

 float* size = new float[N]();

 float* coordx = new float[N]();

 float* coordy = new float[N]();

 float* coordz = new float[N]();

 …

 int result = count_collisions(

 N, size, coordx, coordy, coordz

);

 …

}

Object-oriented

arrangement of data:

(sphere-collisions-struct.zip)

Low-level oriented

arrangement of data:

(sphere-collisions-low-level.zip)

Week 38/39, we went from
low-level to object-oriented
data structures:

Just for inter-process
communication, we can
convert back to the low level.

MPI_Send(
 coordx, N, MPI_FLOAT,
 target_rank, tag,
 MPI_COMM_WORLD
);

MPI_Recv(
 coordx, N, MPI_FLOAT,
 source_rank, tag,
 MPI_COMM_WORLD,
 MPI_STATUS_IGNORE
);

1923rd November 2022INF205

Stream-based serialization

Observation:
– It is not straightforward to unwrap

more complex data structures.
– We were already using streams for

serialization, in particular file I/O.
– The same stream serialization can

be used to transfer objects via MPI.

Prerequisite: The input and output methods (and operators) must be aligned.

std::istream& operator>>(
 std::istream& is, Graph& g
) {
 g.in(&is);
 return is;
}
std::ostream& operator<<(
 std::ostream& os, const
Graph& g
) {
 g.out(&os);
 return os;
}

overloaded operators in
graph-stream (graph.cpp)

If a stringstream s is used to store the data, the
method s.str().c_str() can be used for sending
a char array, e.g., with MPI_Send.

Size in characters: s.str().size() // +1 for '\0'

attention, pitfall!

2023rd November 2022INF205

Stream-based serialization

Example code graph-stream:

 if(rank == 0) {
 // open in-filestream
 std::ifstream indata(argv[1]);

 // read graph object from file
 indata >> g;
 indata.close();

 // write into stringstream
 std::stringstream text << g;

 // inform recipient about content size
 message_size = text.str().size() + 1;
 MPI_Send(
 &message_size, 1, MPI_INT,
 1, 1, MPI_COMM_WORLD
);

 // send content to recipient
 MPI_Send(
 text.str().c_str(), message_size,
 MPI_CHAR, 1, 2, MPI_COMM_WORLD
);
 }

 if(rank == 1) {
 // get information about the content size
 MPI_Recv(
 &message_size, 1, MPI_INT, 0, 1,
 MPI_COMM_WORLD, MPI_STATUS_IGNORE
);

 // allocate buffer and receive the content
 char* buffer = new char[message_size]();
 MPI_Recv(
 buffer, message_size, MPI_CHAR,
 0, 2, MPI_COMM_WORLD,
 MPI_STATUS_IGNORE
);

 // write into stringstream
 std::stringstream text << buffer;
 delete[] buffer;
 buffer = nullptr;

 // read graph object from stringstream
 text >> g;
 }

message
tag 1

message
tag 2

INF205 23rd November 2022

Digitalisering på Ås

Institutt for datavitskap

5 Parallel data

5.1 Decomposition schemes
5.2 Linked cells
5.3 Message-passing serialization
5.4 Parallel input/output

2223rd November 2022INF205

Parallel I/O: The challenge

As the application scenario is scaled up (and computational resources also),
I/O file sizes usually grow in proportion, and more processes are involved.

But these operations are not concurrent – they limit the scalability of the code.

File input requirement:
– Typically, at startup, plus possibly when a user ingests data.

File output requirement:
– Typically, upon termination, plus possibly when a user extracts data.
– But also for checkpointing:1 The overall execution state must be saved.

How can this be done using (non-parallel) sequential I/O such as an fstream?
– One process (such as rank 0) scatters/gathers and reads/writes for all.
– Processes write into the same file, but one after another.
– Each process writes its own separate file; they are postprocessed later.

1See e.g. fault-tolerance discussion by A. Skjellum, D. Schafer, arXiv:2112.10814 [cs.DC], 2021.

https://arxiv.org/abs/2112.10814

2323rd November 2022INF205

Split-file output (with postprocessing)

Example charmap-output:
All ranks write separate files.

mpirun -np 8 /generator-
parallel … benchmark.pxl …

creates file benchmark.pxl.0
to file benchmark.pxl.7.

When needed, the files can
be concatenated:

cat benchmark.pxl.*
> benchmark.pxl

The concatenated file can be
further exported to BMP.

./generator-sequential 16384 10 benchmark.pxl benchmark.vct
Image edge size: 16384 pixels (16384 x 16384)
No. random disks: 10
Pixel output to: benchmark.pxl
Vector output to: benchmark.vct

===
Parallel environment setup: 0 s
Character map generation: 2.93694 s
Character map file output: 3.3157 s
Parallel environment cleanup: 0 s
===
Total program execution time: 6.25265 s

mpirun -np 8 ./generator-parallel 16384 10 benchmark.pxl …
Image edge size: 16384 pixels (16384 x 16384)
No. random disks: 10
Pixel output to: benchmark.pxl.0
Vector output to: benchmark.vct

===
Parallel environment setup: 0.24087 s
Character map generation: 1.20272 s
Character map file output: 1.57878 s
Parallel environment cleanup: 0.141087 s
===
Total program execution time: 3.16346 s

2423rd November 2022INF205

Split-file output: Charmap example

MPI_Bcast(
 &random_seed, 1, MPI_LONG,
 0, MPI_COMM_WORLD
);

Only one “long” data item needs to be exchanged, synchronizing the random
number generators. In this case it is an advantage, not a disadvantage, to use
a deterministic pseudo-random number generator.

Attention: Most file formats have a sort of header, and they can have a coda.
This needs to be managed correctly when using split-file output.

2523rd November 2022INF205

Parallel I/O using MPI-IO

int MPI_File_open(
 MPI_Comm comm, const char* fname, int mode, MPI_Info info, MPI_File* fh
)

Access modes:

MPI_MODE_RDONLY
(read-only)

MPI_MODE_WRONLY
(write-only)

MPI_MODE_RDWR
(read-write)

MPI_MODE_APPEND
(start from the end of file)

…

int MPI_File_set_view(
 MPI_File fh, MPI_Offset displacement,
 MPI_Datatype etype, MPI_Datatype filetype,
 const char *datarep, MPI_Info info
)

MPI_INFO_NULL

(Example: File view
as a series of blocks.)

MPI 4.0 standard,
Chapter 14

"native" MPI_INFO_NULL

2623rd November 2022INF205

Parallel I/O using MPI-IO: Example

#ifdef USE_MPI
 size_t elements = cm.get_sizex() * cm.get_sizey();
 unsigned char* content = cm.access_data();

 // displacement, etype, and file type information
 MPI_Offset displacement = header_size
 + yoffset*a*sizeof(unsigned char);
 MPI_Datatype etype = MPI_UNSIGNED_CHAR;
 MPI_Datatype etype_array;
 MPI_Type_contiguous(elements, etype, &etype_array);
 MPI_Type_commit(&etype_array);

 // open the file
 MPI_File fh;
 MPI_File_open(
 MPI_COMM_WORLD, pixout_fname.c_str(), MPI_MODE_WRONLY, MPI_INFO_NULL, &fh
);

 // now create a "view" consisting of the displacement, the etype, and the file type
 MPI_File_set_view(fh, displacement, etype, etype_array, "native", MPI_INFO_NULL);
 MPI_File_write(fh, content, elements, etype, MPI_STATUS_IGNORE);
 MPI_File_close(&fh);
#endif

Example mpi-io-demo.cpp: Attention: Here, we need to
know exactly at what position
in the file every rank writes.

We need to know how long
the header part of the file
and the output from all the
lower ranks is going to be.

Discussion: Will this run faster or
slower than with split-file output?

INF205 23rd November 2022

Digitalisering på Ås

Institutt for datavitskap

Conclusion

2823rd November 2022INF205

Quantifying the individual contribution

For week 47 group report, submit a statement on how responsibilities are
distributed in your groups, as percentages/fractions of the respective effort:

– “Data structures” aspect
• You self-assign responsibility in line with your division of work.

• Member no. 1 had C11% contribution, no. 2 had C12%, no. 3 had C13%.

• Contributions to aspect must add up to unity, C11 + C12 + C13 = 100%.

• Can be any distribution from “it’s one person’s work” to “all did 1/3.”

– “Algorithm and performance” aspect

• Same logic as above, C21 + C22 + C23 = 100%.

– “Concurrency” aspect

• Same logic as above, C31 + C32 + C33 = 100%.

This information is used to calculate the individualized part (10%) of the grade.

2923rd November 2022INF205

Individualized part of the grade

How does it work?

Assume that group member j has taken responsibility for x1j fraction of the

aspect “data structures,” x2j for the aspect “algorithm and performance,” and x3j

for the aspect “concurrency.” The group grades for these are g1, g2, and g3.

– C1j + C2j + C3j for group member j does not need to add up to 100%.

– The sum of all cj = (C1j + C2j + C3j)/3 over all group members j is 100%.

– The individualized grade for j is then simply the weighted average
(g1C1j + g2C2j + g3C3j) / 3cj. It is scaled to contribute 10% to the total.

Two exceptions:

– If 10% < cj < 25%, the individualized grade for j becomes zero.

– If cj ≤ 10%, the overall grade for j becomes zero, or F as a letter grade.

INF205 23rd November 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

5 Parallel data

5.1 Domain decomposition
5.2 Linked cells
5.3 Message passing serialization
5.4 Parallel input/output

