
INF205 30th November 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

5 Parallel data

5.5 Resource efficiency metrics
5.6 Requirements modelling
5.7 Load balancing

INF205 30th November 2022

Digitalisering på Ås

Institutt for datavitskap

5 Parallel data

5.5 Resource-efficiency metrics

330th November 2022INF205

Requirements: The traditional view

In most cases, discussion of computational resources limits itself to “space”
and “time.” This is also motivated by tradition in theoretical computer science.
In practice, then, time usually becomes the main performance metric, whereas
space becomes the main bottleneck (memory access, communication, file I/O).

Strong scaling (Amdahl, constant problem size) on parallel architectures:
– Runtime reduction as number of processes increases (ideally, linear).
– Total CPU time increase as there are more processes (ideally, none).
– Rate of CPU operations (e.g., FLOP/s) as fraction of peak performance.
– Amdahl’s law: Deterioration of performance at some point is inevitable.

Weak scaling (Gustafson, proportional problem size) on parallel architectures:
– CPU time per problem size as problem and core usage are scaled up.
– Runtime increase during the scale-up.
– Rate of CPU operations (e.g., FLOP/s) as fraction of peak performance.
– Some algorithms and codes don’t show a major decay in these metrics.

430th November 2022INF205

Economic metrics

Investment and operational costs can be
considered. For an analysis of investment
costs1 to be reasonably actionable, it must
include multiple representative use cases.

Operational costs usually also have a major
ecological aspect (computational and cooling
electricity cost). They might be taken into ac-
count for scheduling/workflow management.

Example on the right: C. Kutzner et al.,
“More bang for your buck: Improved
use of GPU nodes for GROMACS
2018,” J. Comp. Chem. 40(27): 2418–
2431, doi:10.1002/jcc.26011, 2019.

https://dx.doi.org/10.1002/jcc.26011

530th November 2022INF205

Ecological and socioeconomic metrics

How about bitcoins, and maybe similar blockchain technologies such as NFTs?

From A. L. Goodkind et al., Appl. Econ. Lett., doi:10.1080/13504851.2022.2140107, 2022.

https://dx.doi.org/10.1080/13504851.2022.2140107

630th November 2022INF205

Ecological and socioeconomic metrics

Key performance indictators (KPIs) for ecological performance1 can include:

– Abiotic-resource depletion potential (ADP)
– Cumulative energy consumption
– Greenhouse warming potential, including from use of refrigerants
– Water consumption
– DCiRE: Contribution of building infrastructure to these categories

1B. Schödwell, R. Zarnikow, KPI4DCE report, UBA no. 19/2018, pp. 25, 154, 2018.

Blue Angel: “Type I environmental label” (ISO 14024) based
on full life-cycle-analysis, targeting customers.2

EC explores introduction of additional Type II and III labels.3

3EC report “Study on Greening Cloud Computing […],” doi:10.2759/116715, pp. 128, 289, 2022.

2See e.g. https://www.hlrs.de/about/certifications.

https://dx.doi.org/10.2759/116715
https://www.hlrs.de/about/certifications

730th November 2022INF205

Ecological and socioeconomic metrics

p. 98, “Study on Greening Cloud Computing […],” EC report, doi:10.2759/116715, 2022.

https://dx.doi.org/10.2759/116715

830th November 2022INF205

Example: Ideas for resource efficiency

WindHPC based on pre-existing
solution WindCores1 from
WestfalenWind GmbH: Computing
nodes (and data centre nodes)
integrated into the structure of wind
turbines. Slogan: “Power to bytes.”

1https://www.windcores.de/

(BMBF project “In Windkraft-
anlagen integrierte Second-
Life-Rechencluster”)

https://www.windcores.de/

INF205 30th November 2022

Digitalisering på Ås

Institutt for datavitskap

5 Parallel data

5.5 Resource efficiency metrics
5.6 Requirements modelling

1030th November 2022INF205

Requirements: The traditional view

Assume that algorithms A and B both solve the same problem (problem size: n).

The main purpose of asymptotic efficiency/performance analysis with O(n)
notation is not even about algorithms. It is done to classify problems into com-
plexity classes: Problem complexity = Best algorithm’s asympotic efficiency.

Yes: It is important to know, for example, whether a problem is NP-complete.
But: That knowledge alone does not help when we need to solve the problem.

Algorithm A

Runtime: 200 µs · n2 + 1 s

Memory: 8 KB · n

Algorithm B

Runtime: 1 µs · n3 + 100 µs · n2 + 1 s

Memory: 64 byte · n2

O(n2) time!

O(n) space! O(n2) space!

O(n3) time!

1130th November 2022INF205

Limitation of the traditional view

See also G. Dlamini et al., Inform. Sci. 582, 767–777, 2022, for a com-
parison of sorting algorithms with respect to energy consumption metrics.

insertion sort + binary search

simple insertion sortselection sort

mergesort
O(n log n)

1230th November 2022INF205

Limitation of the traditional view

mergesort

Observation

The asymptotic performance of
selection sort, O(n²), is worse than

that of mergesort, O(n log n).

Asymptotic: For large values of n.

However, selection sort runs faster for lists
with a moderate number of elements.

selection sort

1330th November 2022INF205

Quantitative requirements modelling

Idea and prerequisites:

– The parameter space or domain of the requirements model is well
defined, accounting for type and size of the input or use case and the
execution conditions of the code (such as number of processes).

– We build a correlation or closed expression that serves as a model of the
code, predicting its computational resource requirements. This can be:
• Purely predictive, based on a theoretical analysis of the code.

(Can always be done for a simplified model, if no data are available.)
• Regression/parameterization of a model, known to be qualitatively

right, to performance data. (Counts as supervised machine learning.)
• Unsupervised machine learning from performance data.

Discussion: For what purpose can it be helpful to have a quantitative
requirements model? In what ways might we use it in practice?

1430th November 2022INF205

Quantitative requirements modelling

1S. Shudler et al., in Proc. ESPT-VPA 2017&18, doi:10.1007/978-3-030-17872-7_8, 2019.

https://dx.doi.org/10.1007/978-3-030-17872-7_8

1530th November 2022INF205

Use in workflow management systems

1J. Chem. Eng. Data 65(3): 1313–1329, doi:10.1021/acs.jced.9b00739, 2020.

TaLPas WMS for task-based load balancing, scheduling, and autotuning:1

workflow
model

performance
model

Workflow model suggests what to simulate next (p).
Performance model predicts runtime as function of N.
N is chosen by workflow manager, simulation is run.
Runtime data used to improve performance model.

https://dx.doi.org/10.1021/acs.jced.9b00739

INF205 30th November 2022

Digitalisering på Ås

Institutt for datavitskap

5 Parallel data

5.5 Resource efficiency metrics
5.6 Requirements modelling
5.7 Load balancing

1730th November 2022INF205

The slowest process decides

The aim of load balancing is to make the slowest process as fast as possible.
Ideally, all processes take the same time for their task: There is no idle time.

a·a pixel image

8
8
8
8
8
8
8
7

a·a pixel image
7
7
7
7
7
7
7

14

int ny = 1 + (a-1)/size;
int yoffset = rank*ny;
if(rank == size-1) ny = a - yoffset;

int ny = a/size;
int yoffset = rank*ny;
if(rank == size-1) ny = a - yoffset;

charmap-output

Ranks 0 to 6
are idle 50%
of the time,
all waiting
for rank 7.

Viable load
balance.

1830th November 2022INF205

Load-balanced domain decomposition

Requirements modelling can be used to predict how the way in which the
domain is decomposed, for a given input case/scenario, influences the load of
each of the parallel processes.

Usually, no quantitatively accurate requirements model exists. Even then, a
rough approximation can be used as guidance for distributing the load.

Example scheme: Recursive bisection
(with “k-dimensional tree,” k = 3).

From the top (whole domain) down to
the bottom (single process), split the
volume recursively into parts such that
processes will receive a similar load.

Alternate between spatial dimensions.

1930th November 2022INF205

Load-balanced domain decomposition

How could this be applied to our graph querying problem?
(In absence of a model, we might approximate runtime ~ number of edges.)

r0

p = {r0, r2, r4, r6}

q = {r1, r3, r5, r7}

<r0> <r2> <r4> <r6> <>
<r1> <r3> <r5> <r7> <>

r2 r4
r6

r1
r3 r5

r7
–1 –1

–1–1

Can be reduced to the problem of finding a cycle, all edges have equal status.
We can split up the graph according to edge labels.

Discussion: How might the domain above be split up among four processes?

2 instances

5 instances 2 instances

4 instances

4 instances

5 instances3 instances

5 instances

2030th November 2022INF205

Practical findings: OpenMP sections

On average, we can expect the two paths to procude the same load. If we split
the domain in two, using OpenMP sections, parallel speedup 2.0 is expected.

r0

r2 r4
r6

r1
r3 r5

r7

// parallel query search
#pragma omp parallel sections num_threads(2)
{
 #pragma omp section
 g.query(&q1, &res1);

 #pragma omp section
 g.query(&q2, &res2);
}

q1 = {r0, r2, r4, r6}

q2 = {r1, r3, r5, r7}

Observation:

Speedup is much lower than expected.
In many cases, the code even becomes
slower just by turning on OpenMP.

2130th November 2022INF205

Practical findings: OpenMP sections

Challenge no. 1: Cores with shared-memory access can compete on L1 cache.

int main(int argc, char** argv) {

 ...

 int64_t* counted_primes = new int64_t[num_threads]; // shared memory!

 omp_set_num_threads(num_threads); // default would be to create $OMP_NUM_THREADS threads

 #pragma omp parallel {

 int thread_id = omp_get_thread_num(); // corresponds to MPI_Comm_rank in the MPI code

 counted_primes[thread_id] = 0;

 for(int64_t n = 6*(thread_id+1) - 1; n < limit; n += 6*num_threads)

 if(is_prime(n)) counted_primes[thread_id]++;

 for(int64_t n = 6*(thread_id+1) + 1; n < limit; n += 6*num_threads)

 if(is_prime(n)) counted_primes[thread_id]++;

 }
 ...

 int64_t overall_primes = 0;

 for(int i = 0; i < num_threads; i++) overall_primes += counted_primes[i]; // shared memory!

 ...

}

Attention: Risk of
“false sharing” due to
L1 cache line overlap.

(Compare code omp-
primes-padding.)

In omp-primes-padding from week 44, we
left large parts of an array empty to deal with
the case where multiple cores try to load the
same memory into their L1 cache.

2230th November 2022INF205

Practical findings: OpenMP sections

Challenge no. 2: Equal load on average does not mean equal load every time.

n0

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

r0
r2

r4 r6r0 r2

r2

r2

r2

r4

r6

r6

r6

r1

r1

r1

r1

r1

r3

r3r3

r5

r5

r7

r7

r5

r5

r5

r7

r7

<><n0> <r1> <n3>
<n0> <r1> <n4>
<n1> <r0> <n3>
<n1> <r1> <n4>
<n1> <r0> <n5>
<n1> <r1> <n5>
<n2> <r1> <n5>

<n3> <r2> <n6>
<n3> <r2> <n7>
<n3> <r3> <n7>
<n3> <r2> <n8>
<n4> <r2> <n6>
<n4> <r3> <n6>
<n5> <r2> <n6>
<n5> <r3> <n7>

<n6> <r5> <n9>
<n6> <r4> <n10>
<n6> <r5> <n10>
<n7> <r5> <n10>
<n7> <r4> <n11>
<n7> <r5> <n11>
<n8> <r5> <n11>

<n9> <r6> <n12>
<n9> <r7> <n12>
<n10> <r7> <n12>
<n10> <r6> <n13>
<n10> <r7> <n14>
<n11> <r6> <n12>
<n11> <r7> <n12>
<n11> <r6> <n13>

<>

2330th November 2022INF205

Dynamic load balancing

Observations:

1) Performance models are not completely accurate. Moreover, they will
usually neglect some of the parameters that influence the runtime.

2) The actual resource requirements will not always be the same for given
parameter values. There can be a non-negligible statistical uncertainty.

3) Load can change over runtime, e.g., from a changing density profile.

4) Anything can occur on a node in the background, or at the hardware
level (poor cooling, needs to be clocked down, etc.). This cannot be
reflected in the performance model, and it can change at runtime.

Execution times on HPC infrastructures are of the order of hours to days. The
value of the consumed resources is substantial.

Therefore, it can be worth the effort to readjust the decomposition dynamically.

2430th November 2022INF205

Dynamic load balancing: Example

Reconstruct decomposition,
e.g., every 10000 steps in a
molecular dynamics simulation.

recursive bisection diffusive multisection1, 2

Gradual (“diffusive”) changes
can be implemented to adjust to
configuration and performance.

?

?

1S. Seckler, J. Computat. Sci. 50: 101296, doi:10.1016/j.jocs.2020.101296, 2021.
2J. Sablić, E-CAM project deliverable 4.6, 2020.

https://dx.doi.org/10.1016/j.jocs.2020.101296

INF205 30th November 2022

Digitalisering på Ås

Institutt for datavitskap

Conclusion

2630th November 2022INF205

Group presentations

You do not need to attend all presentations!
Suggestion: Come to those about your topic.

The main aims are:
– Discussion of the problems and

exchange of ideas
• Could be more useful if we can

extend the deadline, e.g., to 15.12.
• Will in any case improve the way

these (or similar) problems will be
discussed in INF205 in the future

– Avoid misunderstandings of what you
did and what your intentions were
• Reduces mistakes during grading

1.12., 10.00–11.30
TF1-105

disk graphics, ANNs

7.12., 14.00–16.00
TF1-102

spherical particles

9.12., 12.30–13.30
 tba

various topics

1.12., 12.00–14.00
TF1-105

graph querying

15.12., 12.30–14.00
 tba

disk graphics

15.12., 10.30–12.00
 tba

various topics

#9, #23, #26 #8, #10,
#17, #20

#1, #6,
#12, #19

#2, #3

#4, #5, #7 #13, #16, #25

2730th November 2022INF205

Submission deadline

The proposal has come up (not unusual) to extend the submission deadline
which is so far set to Monday, 5th December, 24.00 CET.

– Right now, the deadline is before the presentation for some groups,
but after the presentation for others, creating slightly unlike conditions.

– The purpose of the project as an examination is to demonstrate that
you have acquired competencies. When that is done should not matter.

On the other hand:

– With an extended deadline, people with another activity scheduled for
week 49 (such as the project from INF250 “Image Analysis”) could
experience themselves as being disadvantaged.

– People may have made their schedule with 5.12. as the INF205
deadline, but then they could need to contribute to their group’s work.

We can extend the deadline if nobody objects. Discussion may be needed.

2830th November 2022INF205

Module evaluation

2930th November 2022INF205

Where to go with INF205 …

See below some ideas that we have discussed internally.
They are not officially decided so far (to my knowledge).

These could be worth commenting on in the module evaluation. And do think
of your own ideas, small or large, how to improve INF205 for the future. Con-
crete, actionable suggestions are always the most useful kind of feedback.

– INF205 to be moved to the Spring term (next time is then Spring 2024).
– Lecture module INF205 to be split from programming project INF206.

The project (in June) would then become optional, but require INF205.
– Consequently, INF205 would need a normal exam instead of a project.

We should also think about rearranging content, what parts of the module
would benefit from a stronger focus, and what we need less (or not at all).

INF205 30th November 2022

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

5 Parallel data

5.5 Resource efficiency metrics
5.6 Requirements modelling
5.7 Load balancing

