
INF205 5th February 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

1 Introduction

1.1 Why C++
1.2 C/C++ compiler
1.3 From Python to C/C++

1.4 Static arrays
1.5 Getting started in practice
1.6 Design by contract

25th February 2024INF205

INF205 learning outcomes

After completing the course you will be able to

– implement solutions in modern C++;
– manage memory safely;
– make use of capabilities provided by the C++ Standard Library and

third-party libraries;
– implement data types from “first principles;”
– assess programs and their use in terms of sustainability metrics;
– write code suitable for embedded systems and high-performance

computing;
– create interfaces allowing your code to interact with other software.

We speak of “modern C++” because of the long history of C++, e.g., retaining
all of the C programming language. C++ is like several languages in one.

Focus: Develop solutions that work both reliably and efficiently.

35th February 2024INF205

Structure of the course

1) Introduction (week 6)
● Getting started – the lecture today.

2) The C/C++ programming language(s) (weeks 7 and 8)
● Essential features that make C/C++ different from Python; e.g., dealing

with memory allocation and deallocation explicitly, using pointers.

3) Data structures (weeks 9 to 11)
● Linked data structures, containers, C++ standard template library.
● Memory management for container data structures.

4) Concurrency (week 12 to 17)
● MPI and ROS2 for parallel programming and concurrent processes.

5) Production and optimization (week 18 and 19)
● Good practices and useful tools for programming projects.

INF205 5th February 2024

Digitalisering på Ås

Institutt for datavitskap

1 Introduction

1.1 Why C++?

55th February 2024INF205

Resource efficient computing: Why?

Embedded systems

Digitalization entails pervasive
computing, including at nodes or
components without a great amount
of computational resources.

P. J. Denning, T. G. Lewis, doi:10.1145/2976758, 2017.

Moore’s law

“What comes after
Moore’s law?”

C. E. Leiserson et al.,
doi:10.1126/science.aam9744, 2020.

therein, see Tab. 1

6

C++ vs. Python: Programming language features

C++ Python

“What do you know about language features
that are different in C++ and Python?”

7

C++ vs. Python: Compare the codes

#include <iostream>

bool is_prime(int n)
{
 for(int i = 2; n >= i*i; i++)
 if((n % i) == 0) return false;
 return true;
}

int main()
{
 int x = 900;
 if(is_prime(x))
 std::cout << x << " is prime.\n";
 else std::cout << x << " is not prime.\n";
}

def is_prime(n):
 for i in range(2, 1 + int(n**0.5)):
 if n%i == 0:
 return False
 return True

x = 900
if is_prime(x):
 print(x, "is prime.")
else:
 print(x, "is not prime.")

These two codes are equivalent.

What does the program do?

Example file: is-prime-900.cpp

C++ code Python code

8

Corrigendum: This is what it should have looked like

#include <iostream>

bool is_prime(int n)
{
 if(i < 2) return false;
 for(int i = 2; n >= i*i; i++)
 if((n % i) == 0) return false;
 return true;
}

int main()
{
 int x = 900;
 if(is_prime(x))
 std::cout << x << " is prime.\n";
 else std::cout << x << " is not prime.\n";
}

def is_prime(n):
 if < 2:
 return False
 for i in range(2, 1 + int(n**0.5)):
 if n%i == 0:
 return False
 return True

x = 900
if is_prime(x):
 print(x, "is prime.")
else:
 print(x, "is not prime.")

C++ code Python code

Example file: is-prime-900.cpp

This should have looked like here, to catch the
case where n is smaller than two. Apologies for
not thinking of it earlier. Adding this slide now.

INF205 5th February 2024

Digitalisering på Ås

Institutt for datavitskap

1 Introduction

1.1 Why C++?
1.2 C/C++ compiler

book Section 1.2

10

C/C++ as a compiled language

Compile the code from the previous example (file name: isprime-900.cpp),
using the GNU C++ compiler: g++ isprime-900.cpp -o isprime-900

Alternatively, in a Linux environment, we have GNU make: make isprime-900

Normally, codes comprise multiple code files. They are compiled separately
(creating object files), and then linked. Only after linking there is an executable
file. With the GNU C++ compiler, g++ is called both as compiler and linker:

g++ -c only-is-prime.cpp

g++ -c only-main.cpp

g++ -o isprime-900 *.o

only-is-prime.cpp

only-main.cpp

isprime-900

compiler

compiler

only-is-prime.o

only-main.o

linker

Example file: is-prime-separate-files.zip

11

Split into header files (*.h) and code files (*.cpp)

Example file: is-prime-three-files.zip

Before, we split the code into two
code files, one for each function.

How does main know is_prime at
compile time? The declaration

bool is_prime(int n);

must be split from the definition:

bool is_prime(int n) { … }

Such declarations are normally
stored in header files with the
ending “.h”. In this way, the header
can be included by all external code
that requires the same declarations.

#include <iostream>

bool is_prime(int n)
{
 for(int i = 2; n >= i*i; i++)
 if((n % i) == 0) return false;
 return true;
}

int main()
{
 int x = 900;
 if(is_prime(x))
 std::cout << x << " is prime.\n";
 else std::cout << x << " is not prime.\n";
}

12

IDE example: Eclipse

https://www.eclipse.org/downloads/packages/release/2024-03/m2/eclipse-ide-cc-developers

https://www.eclipse.org/downloads/packages/release/2024-03/m2/eclipse-ide-cc-developers
https://www.eclipse.org/downloads/packages/release/2024-03/m2/eclipse-ide-cc-developers

INF205 5th February 2024

Digitalisering på Ås

Institutt for datavitskap

1 Introduction

1.1 Why C++?
1.2 C/C++ compiler
1.3 From Python to C/C++ 1.3, 1.4, 1.5, 1.8

14

What differences can we see?

#include <iostream>

bool is_prime(int n)
{
 for(int i = 2; n >= i*i; i++)
 if((n % i) == 0) return false;
 return true;
}

int main()
{
 int x = 900;
 if(is_prime(x))
 std::cout << x << " is prime.\n";
 else std::cout << x << " is not prime.\n";
}

def is_prime(n):
 for i in range(2, 1 + int(n**0.5)):
 if n%i == 0:
 return False
 return True

x = 900
if is_prime(x):
 print(x, "is prime.")
else:
 print(x, "is not prime.")

What differences between the
languages can we recognize
from the introductory example?

C++ code Python code

15

C/C++ is a statically typed language

Most compiled programming languages are statically typed languages: The
data type of each variable must be known to the compiler, at compile time.

Therefore, the type of a variable must be given when the variable is declared.

float, double
– single-precision and double-precision floating-point numbers

int
– the default signed integer type

short (int), long (int), long long (int)
– less/more memory and smaller/larger range of values

unsigned, unsigned short (int), unsigned long (int), …
– holds natural number (or zero); modulo-arithmetic applies: –n = 2k – n

bool
– integer-like; meant to hold the value false (0) or true (1, or any value ≠ 0)

char, wchar_t
– integer-like; meant to hold a ASCII (char) or Unicode (wchar_t) character

16

Functions require argument types and a return type

// declaration:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, …);

// definition:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, …)
{
 …
 return return_value; // must be of type ret_type
}

Multiple versions of a function (named equally) with different argument types:

// takes an integer argument
//
void do_something(int n) { … }

// takes a floating-point argument
//
void do_something(double x) { … }

Function overloading:

INF205 5th February 2024

Digitalisering på Ås

Institutt for datavitskap

1 Introduction

1.1 Why C++?
1.2 C/C++ compiler
1.3 From Python to C/C++
1.4 Static arrays

book Section 1.7

18

Dynamic arrays (such as lists in Python)

An array is a sequence of data items of the same type that is contiguous in
memory. Python lists are contiguous in memory, i.e., they are arrays. They can
also grow or shrink in size over time: Python lists are dynamic arrays.

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future. When the capacity of the dynamic array is
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12

x[0] x[1] x[2] x[3]

4

x.length

x = [34, 1, 7, 12]

Note: More memory is allocated than strictly necessary.
Like before, the elements are contiguously arranged in memory.

logical
size is 4

free free

capacity is 6

19

Static arrays

Arrays in C/C++ are static: When declaring the array, the array size is specified
and the exact amount of memory required for these data items is allocated.
The array size does not change over time.

How do we declare a array?
– Give the size as constant expression in square brackets; e.g., int values[6];

How do we initialize an array?
– Explicitly give all the values: int values[] = {4, 2, 3, -7, 2, 3};
– Initialize to all zeroes, indicating the array size: int values[6] = { };

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

Accessing elements of an array is highly efficient: When x[i] is accessed, the
compiler transforms this into accessing the memory address x + sizeof(int) * i.

20

Character arrays: The way of defining a string in C

In C++, there is an explicit std:string datatype. But since C++ is backwards
compatible to C, there is also the more traditional string type: The char array.

Also to ensure backwards compatibility with C, string literals between double
quotation marks such as "INF205" are of the type const char* (not std::string).
Between single quotation marks there is always a char, such as char x = 'a';

'I' 'N' 'F' '2' '0' '5' '\0'

string s = "INF205"; or char s[] = "INF205"; produce the following in memory:

73 78 70 50 48 53 0

Note that while the string length above is six, one more is allocated in
memory. The array has seven elements: It ends with the null character '\0'.

INF205 5th February 2024

Digitalisering på Ås

Institutt for datavitskap

1 Introduction

1.1 Why C++?
1.2 C/C++ compiler
1.3 From Python to C/C++
1.4 Static arrays
1.5 Getting started in practice

22

Mandatory activities in INF205

The grade from INF205 will be determined from a programming project.
(Work on this is to begin from calendar week 12.)

Mandatory activities:
– There will be five lab worksheets, of which you are required to pass at

least three. A worksheet is passed if the majority of its problems have
been solved (more or less) correctly.

– Collaboration between two people is allowed; then, submit on Canvas
twice. Write explicitly when there is a collaboration or joint submission.

– Solutions to the problems are presented by students in the tutorial
(data lab) sessions. Everybody needs to present once. Other than this,
attendance at the tutorial (data lab) or lecture is in no way mandatory.

– Programming projects are also presented, individually or as a group.

Mandatory activities are required to pass, but don’t contribute to the grade.

23

The first tutorial worksheet (deadline 13.2.) has seven problems:

1. Basic tools.

2. From C++ to Python.

3. From Python to C++.

4. Size of the primary data types, in bytes.

5. Using C/C++ arrays.

6. Program analysis – termination of a recursive function.

7. Program analysis – return value of a function.

It is published on Canvas and on the INF205 course website.

First tutorial worksheet

https://home.bawue.de/~horsch/teaching/inf205/lab/inf205-1.html
https://nmbu.instructure.com/courses/10489/assignments/42681
https://home.bawue.de/~horsch/teaching/inf205/lab/inf205-1.html

24

For the first worksheet, we will proceed as follows:

● Monday, 5th February: The worksheet was introduced at today’s lecture.

● Wednesday, 7th February: Tutorial session for working on the problems.

● Monday, 12th February: Assigning presentation slots (during lecture time).

If they cannot all be assigned at lecture time, ASAP thereafter.

● Tuesday, 13th February: Submission deadline.

● Wednesday, 14th February: Presentation of the solutions at the tutorial.

Hopefully, this process works well and can be followed for all five worksheets.

Note: There is only one tutorial group, Wednesdays, 14.15 – 16.00, TF1-105.

(Intially another, two hours earlier, had been announced. There is only one!)

How do we proceed?

INF205 5th February 2024

Digitalisering på Ås

Institutt for datavitskap

1 Introduction

1.1 Why C++?
1.2 C/C++ compiler
1.3 From Python to C/C++
1.4 Static arrays
1.5 Getting started in practice
1.6 Design by contract

Appendix C

265th February 2024INF205

Program flow graphs

1F. Nielson, H. Riis Nielson, C. Hankin,
Principles of Program Analysis,
Heidelberg: Springer, 2005.

275th February 2024INF205

Preconditions and postconditions

Note

Consider the statement “a” from transition S1 → S3:

– The execution state S1 is the precondition of statement a.

– The execution state S3 is the postcondition of statement a.

Precondition: State of the program at a
point directly before the considered unit.
This may include assumptions taken
from the design contract or specification.

Postcondition: State of the program at a
point directly after the considered unit,
assuming that the precondition was
fulfilled at the point directly before it.

if (condition c)

{ a; } else { b; }

initial state S0

true false
S1 S2

final state S3 final state S4

28

Programming paradigms

Imperative programming
– It is stated, instruction by instruction, what

the processor should do
– Control flow implemented by jumps (goto)

Structured programming
– Same, but with higher-level control flow
– Contains “instruction by instruction” code

Procedural programming
– Functions (procedures) as highest-level

structural unit of code
– Still contains loops, etc., for control flow

within a function

Object-oriented programming
– Classes as highest-level structural unit of

code; objects instantiate classes
– Still contains functions, e.g., as methods

Functional programming
(also: “declarative programming”)

Logic programming

Constraint programming

Programming paradigms based
on describing the solution

rather than computational steps:

29

Design by contract

• Specify
– Function specification – what it should do
– Non-functional specification – how well it should do it

• Design
– Select appropriate algorithms and data structures

• Consider effectiveness/correctness – does it do
what it is supposed to?

• Consider efficiency
– Size
– Speed

• Implement
– Create solution at low level

• Evaluate
– Debug, assess for syntactic & semantic correctness
– Check performance (i.e., resource requirements)

“contracts” between specifier,
designer, and programmer

INF205 5th February 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

1 Introduction

1.1 Why C++
1.2 C/C++ compiler
1.3 From Python to C/C++

1.4 Static arrays
1.5 Getting started in practice
1.6 Design by contract

