
INF205 11th March 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures

3.1 Object orientation
3.2 Inheritance
3.3 Linked data structures

3.4 Containers
3.5 Graph data structures
3.6 Streams and file I/O

211th March 2024INF205

Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???

???

???

container

stack (data
structure)

queue

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 11th March 2024

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.1 Object orientation
3.2 Inheritance
3.3 Linked data structures
3.4 Containers

Sections 6.1 – 7.2

Core Guidelines:

C.31 – C.33, T.1,
T.2, T.62, T.83

(+ more “C” & “T”)

411th March 2024INF205

Rule of three: Shallow vs. deep copy

Shallow copy:

Standard copying, such as if there is
no handwritten copy constructor or
copy assignment operator, will
simply copy the value of pointers,
not the content to which they point.

After shallow copying, the content will
exist once in memory. This can be
appropriate when the content is not
owned but just pointed at.

original copydata

Deep copy:

Standard copying, such as if there is
no handwritten copy constructor or
copy assignment operator, will
simply copy the value of pointers,
not the content to which they point.

After deep copying, content exists twice in
memory. Design following the concept of
a “container” that uniquely “owns” its
content requires deep copying.

original copydatadata

511th March 2024INF205

Rule of three: (2) Copy constructor

The copy constructor T::T(const T& orig) is
called when the following two are done at
the same time: (1) allocation of an object,
so that a constructor needs to be called,
and its (2) initialization to the value of a
pre-existing object that continues to exist.

class T
{
public:
 T() { this->p = new S[1000](); }
 T(const T& original) {
 this->p = new S[1000]();
 std::copy(
 original.p, original.p+1000,
 this->p
);
 }
 …
}

// default constructor
T tfirst;
…
// copy constructor
T tsecond = tfirst;

void func(T param) { … }

int main() {
 T tobject;
 …
 // copy constructor
 func(tobject);
}

Examples for when the copy constructor is called:

after running the
copy constructor, the

same content must
exist in memory

twice!

std::copy can be used
for data that are

contiguous in memory

1. Create space for the duplicate.
2. Now write the duplicate into it.

6

Rule of three: (3) Copy assignment operator

The copy assignment operator technically
is an overloaded “=” operator:

class T
{
public:
 T() { this->p = new S[1000](); }
 T& operator=(const T& rhs) {
 if(&rhs == this) return *this;

 std::copy(
 rhs.p, rhs.p+1000, this->p
);
 return *this;
 }
 …
}

// default constructor
T tfirst, tsecond;
…
// copy assignment
tsecond = tfirst;

A copy assignment is
done whenever we copy
the value of one variable
to another, both existed
before, and both
continue to exist.

after running the
copy assignment, the

same content must
exist in memory

twice!

T& T::operator=(const T& rhs) { … }

Difference from the copy constructor:
– Object already exists, hence no initial

allocation of memory for content.
– But deallocate pre-existing content

if necessary.

7

Rule of three and rule of five

Container objects take ownership, i.e., lifetime and deallocation responsibility.
The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

At least implement (1) the destructor!
If (2) and (3) are not there, forbid copying.

Most often you will then also need
to implement (0) a constructor.

“Rule of five:” Implement
(1) destructor,
(2) copy constructor,
(3) copy assignment operator,
(4) move constructor,
(5) move assignment operator.

“Rule of three:”
(1) destructor,
(2) copy constructor,
(3) copy assignment operator.

8

Rule of five: (4) Move constructor

The move constructor is called when the
content of an old object can be shifted to a
new object that is allocated and initialized
(e.g., before we deallocate the old object).

class T
{
public:
 T() { this->p = new S[1000](); }

 T(T&& old) {
 this->p = old.p;
 old.p = nullptr;
 }
 …

private:
 S* p …
}

T::T(T&& old) { … }

A shallow copy of the
pointer to the content is
good enough; after the
action, the content exists
in memory only once!

Attention: Right after the
move constructor for

“this”, the destructor of
“old” might be called.

Remove all pointers to
the content from old, so

that it does not get
deallocated!

T func(…) {
 T tfirst;
 …
 return tfirst;
 // the destructor will be called
}

int main() {
 // but before, call the move constructor
 T tsecond = std::move(func(…));
}

Typical use case: Efficient
handover of content

returned by a function.

9

Move constructor: Why can it be advantageous?

Copy constructor + destructor:

If there is no move constructor, or
the compiler does not enforce a
move, first all the content is copied
(deep copy); the old container is
probably deallocated right after.

This is an expensive operation whenever
there is a substantial amount of data. All
data are copied, unnecessarily, since at the
end they still exist only once in memory.

old newdatadata

Move constructor + destructor:

The move constructor is used to
make a new container own the data
without copying the data. A shallow
copy is made, and the data are
detached from the old container.

The shallow copy is an inexpensive
operation. If the data exist once in memory
both before the operation and after, why
copy them from one place to another?

old newdata

0
0
0
0

Example file: copying-and-moving.zip

10

Rule of five: (5) Move assignment operator

The move assignment operator relates to the move constructor the same way
as the copy assignment operator relates to the copy constructor.

T func(…) {
 T tfirst;
 …
 return tfirst;
 // the destructor will be called
}

int main() {
 T tsecond;
 …
 // but before, call the move assignment operator
 tsecond = std::move(func(…));
}

T& T::operator=(T&& old) { … } old thisdatadata

old thisdata

old thisdata

0
0
0
0

constructor called

tsecond exists already

Example file: copying-and-moving.zip

11

Templates: Parameterized class definitions

We have already seen the STL templates: The same container implementation
can be used for different types of contained objects, such as list<float> and
list<double>. We can define our own class templates in this way:

template<typename T> class SinglyLinkedListNode
{
public:
 T& get_item() { return this->item; }
 SinglyLinkedListNode<T>* get_next() const { return this->next; }
 void set_item(T in_item) { this->item = in_item; }

private:
 T item;
 SinglyLinkedListNode<T>* next = nullptr;
 void set_next(SinglyLinkedListNode<T>* in_next) { this->next = in_next; }
};

attention with initializations

attention with split between
header and object file; think about

“what the compiler will do”

While there is only one source code for each template, object code is normally
generated separately for each concrete version of it. (But not for the template!)

Example file: list-template.zip

12

Templates for functions and methods

The same sort of syntax applies for parameterized function and method
declarations and definitions. This includes cases with multiple parameters.

template<typename T>
 void SinglyLinkedList<T>::push_front(
 const T& pushed_item
) {
 SinglyLinkedListNode<T>* new_node

 = new SinglyLinkedListNode<T>;
 new_node->set_item(pushed_item);

 if(this->empty()) this->tail = new_node;
 else new_node->set_next(this->head);
 this->head = new_node;
}

template<typename SeqnT, typename ElmnT>
 void test_sequence(
 SeqnT* sqn, int n, int m,
 ElmnT a, ElmnT b, ostream* os
) {
 …
}

template<typename SeqnT, typename ElmnT>
 float test_with_time_measurement(
 SeqnT* sqn, int iterations, ElmnT a, ElmnT b
) {
 int sequence_length = 1000001;
 int deletions = 10;
 test_sequence(sqn, 100000, 10, a, b, &cout);
}

Example file: list-template.zip

INF205 11th March 2024

Digitalisering på Ås

Institutt for datavitskap

Sign-up for the

third worksheet

https://terminplaner6.dfn.de/b/27f9b774151252d8aedf3433b46670a3-637341
https://terminplaner6.dfn.de/b/27f9b774151252d8aedf3433b46670a3-637341

INF205 11th March 2024

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.1 Object orientation
3.2 Inheritance
3.3 Linked data structures
3.4 Containers
3.5 Graph data structures

15

Graphs as non-sequential linked data structures

Sequential data structures arrange their items in
a linear shape. Sometimes that is not the best
solution, or it is not appropriate at all.

Linked data structures with a non-sequential
shape are graphs, which includes the important
special case of tree data structures.

A graph G = (V, E) is defined by its nodes V,
which are also called vertices, and edges E that
connect one node to another. Nodes and edges
can be labelled to give the graph a meaning.

Graphs can be used to represent relations
between objects, such as distances on a
map, or as a knowledge graph.

Trees are often used as sorted data
structures, for efficiency reasons.

cognitive step σ by
which a obtains φ

Semiosis

researcher a

data δ that allow a
to conclude φ

DigitalArticulation

Interlocutor

KnowledgeClaiminterpretant φ, an
answer to question q

research question q Question

B
.

(isAssertedBy)

(isAbout)

Ë

Pι
..

(isInterpreterIn)

R
^

R
^

q (hasSubjectMatter)

E
.

E
…

Oslo

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

33 22

7

21

21

43

60

30

63

27
13

29

26

16

Data structure implementation: Adjacency lists

0

label next

adjacency
list

1

2

3

node

empty
list

empty
list

list with pointers (or references)
to node 4 and node 5

(list of nodes to which
there is an edge) 0

1

2

3

4

5

7

8

6

graph with
labelled nodes

9

In a graph, one node can be connected to multiple other nodes. An adjacency
list (with various possible implementations) can be used to manage these links.

Doubly-linked version of this: Two lists, for incoming and for outgoing edges.

17

Data structure implementation: Incidence lists

Doubly-linked version of this: Two lists, for incoming and for outgoing edges.

An incidence list is a list of edges to which a node is incident. For adjacency
lists or incidence lists, various data structures can be used, e.g., dynamic arrays.

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b

b

d

graph with labelled
nodes and edges

3

label out

9

c
a

label

label

source

target

target

source

edge

edge

node 5

node 4

node 0

edge

source

label

a

b

a

target

node

18

Data structure implementation: Adjacency matrix

Matrix-like data structures include two-dimensional arrays, i.e., arrays where
the individual elements are accessed by double indexing. The most relevant
use for graphs is the adjacency matrix. (Also possible: An incidence matrix.)

For a sparse graph, the vast majority of entries in the 2D array/matrix is “false”.
Adjacency matrices are commonly only used when expecting a dense graph.

0

1

2

3

4

bool adj[5][5]={ {true, true, true, false, false},

{false,false, false, true, false},

{true, true, false, false, false},

{false,true, true, false, false},

{true, false, true, false, false} };

out of node 0

out of node 1

out of node 2

out of node 3

out of node 4

19

Graph traversal

Traversal of graphs: Depth-first search and breadth-first search

depth-first search (DFS)

0

12

3 4

5

67

8

9

0

1

2

3

4

5

7

9

8

6

begin
here

breadth-first search (BFS)

begin
here

DFS always proceeds from the most recently detected node (LIFO).
BFS always proceeds from the node that was detected earliest (FIFO).

Note: Only elements to which there is a path from the initial node can be found.

20

Graph traversal: Shortest paths (see also INF221)

For an example showing travel minutes
between locations according to ruter, see
the example code incidence-list-graph.zip.

The data structure employed in the code
are incidence lists (for undirected graphs).
Dijkstra’s algorithm is implemented.

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

7

21

43

60

30

63

27
13

29

26

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

7

21

43

60

30

63

27
13

29

26

root
node

distance 7

distance 37

distance 28
distance 63

distance 55

distance 68distance 71

distance 131

Dijkstra’s

algorithm

Example file: incidence-list-graph.zip

21

Graph traversal: Shortest paths (see also INF221)

Oslo

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

33 12

7

21

21

43

60

30

63

27
13

29

26

root
node

distance 7

distance 21
via Ås

distance 84
via Moss

distance 37
via Ski

distance 19
via Ski

distance 48
via Moss

distance 64
via Moss

21 edge from Ås to Moss
28 edge from Ski to Moss
37 edge from Ski to Askim
48 edge from Moss to Fredrikstad
52 edge from Oslo to Drammen
64 edge from Moss to Horten
84 edge from Moss to Askim

priority queue data structure

distance 52
via Oslo

Example file: incidence-list-graph.zip

In each iteration, visit
the detected node
closest to the root.

Process all edges to
which that node is
incident, detecting
any new undetected
neighbours, and up-
dating tentative dis-
tances.

INF205 11th March 2024

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.1 Object orientation
3.2 Inheritance
3.3 Linked data structures
3.4 Containers
3.5 Graph data structures
3.6 Streams and file I/O

6.4, 11.7, 11.9

Core Guidelines:

C.168

23

I/O operator overloading

See example code io-operator-overloading.zip for the following.

Advice: Input & output methods/operators should use the same serialization.

Assume that for some class C, we have defined methods that write content to
a stream, or that analogously read from a stream.

void C::out(ostream* target) const {
 *target << … ;
}

void C::in(istream* source) {
 *source >> … ;
}

ostream& operator<<(
 ostream& str, const C& x
) const {
 x.out(&str);
 return str;
}

istream& operator>>(istream& str, C& x)
{
 x.in(&str);
 return str;
}

You can convert this to overloaded I/O operator definitions:

Now you can use the operator <<
and the operator >> on objects of
type C just like for numbers, etc.

Example file: io-operator-overloading.zip

2411th March 2024INF205

File input/output

We must serialize the data in order to store them in a file!

To transfer data through a communication channel as a message, the data
items and their parts need to be serialized (ordered) in a well-defined way that
is understood both by the sender and the receiver.

– As a contiguous chunk of memory, if the exchange is memory-based.
– As a file, if file I/O is the mechanism by which data are exchanged.

File stream objects can be used in order to read or write a file.

 // open in-filestream
 std::ifstream infile(argv[1]);

 // read graph object from file
 graph::UndirInclistGraph g;
 infile >> g;
 infile.close();

// file name given as command-line argument argv[1]

Example file: run-graph-example.cpp
(in incidence-list-graph.zip archive)

25

Example code: Spheres in a box

N spheres of different types (with different radii) are positioned in a 3D system.

Evaluate the number of overlaps.

This can be a (very) simple model of a liquid or solid. It is much easier to
implement, and faster to compute, than more realistic molecular models.

Example file: repulsive-spheres.zip

26

Conventions for the box in molecular simulation

Periodic boundary condition (PBC) Minimum image convention (MIC)

0
1

2

3
4

0’

4’

interact, count for potential (e.g., overlaps)
interact, don’t count for potential
don’t interact

PBC: Assume that the simulation box
repeats periodically in all directions.

MIC: Each particle interacts only with
closest replica of each other particle.

27

Example code: Repulsive spheres with soft shielding

See implementation in repulsive-spheres.zip, sphere.cpp, line 51.

dist(i, j) ≥ (σi + σj)/2 dist(i, j) < (σi + σj)/4anything in between

one overlapno overlap counts as eight

int Sphere::check_overlap(const Sphere* other, const double box_size[3]) const
{
 // square distance between the centre of i and the centre of j
 double square_distance = 0.0;
 for(int d = 0; d < 3; d++) {
 double dist_d = other->coords[d] - this->coords[d];

 // apply minimum image convention
 if(dist_d > 0.5*box_size[d]) dist_d -= box_size[d];
 else if(dist_d < -0.5*box_size[d]) dist_d += box_size[d];

 square_distance += dist_d*dist_d;
 }

 // is the square distance smaller than the square of the sum of radii?
 double sum_of_radii = 0.5 * (this->size + other->size);
 int overlap = 0;
 if(square_distance < 0.25*sum_of_radii*sum_of_radii) overlap = 8; // soft shielding
 else if(square_distance < sum_of_radii*sum_of_radii) overlap = 1; // normal overlap
 return overlap;
}

rij

uij

σij /2 σij

1

8

σij = (σi + σj)/2
“Lorentz mixing rule”

pair potential

28

Example code: Generating a configuration

See generator code. Main scenario parameter:

– N, the number of spherical particles in the system; default: N = 4096

Additional benchmark scenario parameters (change only if you have a reason):

– packing fraction ξ, i.e., total sphere volume / box volume; default: ξ = 0.5

– ratio ζmax between largest and smallest sphere diameter; default: ζ = 3

Remark: If the spheres are
all of the same size, the
densest packing (without
any overlaps) has the
packing fraction 0.7405.

This had been known as one
of the “Hilbert problems.”

T. C. Hales, “A proof of the Kepler
conjecture,” Ann. Math. 162(3):
1065–1185, doi:10.4007/annals.

2005.162.1065, 2005.

Example file: generator.cpp (in repulsive-spheres.zip archive)

https://doi.org/10.4007/annals.2005.162.1065
https://doi.org/10.4007/annals.2005.162.1065

INF205 11th March 2024

Digitalisering på Ås

Institutt for datavitskap

Conclusion

3011th March 2024INF205

operator
overloading

Weekly glossary concepts

What are essential concepts from this lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???
???

???

graph
rule of five

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 11th March 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures

3.1 Object orientation
3.2 Inheritance
3.3 Linked data structures

3.4 Containers
3.5 Graph data structures
3.6 Streams and file I/O

