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Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html 

???

???

???

container

stack (data 
structure)

queue

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
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Rule of three: Shallow vs. deep copy

Shallow copy:

Standard copying, such as if there is 
no handwritten copy constructor or 
copy assignment operator, will 
simply copy the value of pointers, 
not the content to which they point. 

After shallow copying, the content will 
exist once in memory. This can be 
appropriate when the content is not 
owned but just pointed at.

original copydata

Deep copy:

Standard copying, such as if there is 
no handwritten copy constructor or 
copy assignment operator, will 
simply copy the value of pointers, 
not the content to which they point. 

After deep copying, content exists twice in 
memory. Design following the concept of 
a “container” that uniquely “owns” its 
content requires deep copying.

original copydatadata
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Rule of three: (2) Copy constructor

The copy constructor T::T(const T& orig) is 
called when the following two are done at 
the same time: (1) allocation of an object, 
so that a constructor needs to be called, 
and its (2) initialization to the value of a 
pre-existing object that continues to exist. 

class T
{
public:
   T() { this->p = new S[1000](); }
   T(const T& original) {
      this->p = new S[1000]();
      std::copy(
         original.p, original.p+1000,
         this->p
      );
   }
   …
}

// default constructor
T tfirst;
…
// copy constructor
T tsecond = tfirst;

void func(T param) { … }

int main() {
   T tobject;
   …
   // copy constructor
   func(tobject);
}

Examples for when the copy constructor is called: 

after running the 
copy constructor, the 

same content must 
exist in memory 

twice!

std::copy can be used 
for data that are 

contiguous in memory

1. Create space for the duplicate.
2. Now write the duplicate into it.
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Rule of three: (3) Copy assignment operator

The copy assignment operator technically 
is an overloaded “=” operator:

class T
{
public:
   T() { this->p = new S[1000](); }
   T& operator=(const T& rhs) {
      if(&rhs == this) return *this;
      
      std::copy(
         rhs.p, rhs.p+1000, this->p
      );
      return *this;
   }
   …
}

// default constructor
T tfirst, tsecond;
…
// copy assignment
tsecond = tfirst;

A copy assignment is 
done whenever we copy 
the value of one variable 
to another, both existed 
before, and both 
continue to exist.

after running the 
copy assignment, the 

same content must 
exist in memory 

twice!

T& T::operator=(const T& rhs) { … }

Difference from the copy constructor:
– Object already exists, hence no initial 

allocation of memory for content.
– But deallocate pre-existing content

if necessary.
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Rule of three and rule of five

Container objects take ownership, i.e., lifetime and deallocation responsibility. 
The programmer needs to take care of this whenever there are data subject to 
manual memory management (new and delete) in a self-designed container.

The programmer needs to take care of this whenever there are data subject to 
manual memory management (new and delete) in a self-designed container.

At least implement (1) the destructor!
If (2) and (3) are not there, forbid copying.

Most often you will then also need 
to implement (0) a constructor.

“Rule of five:” Implement
(1) destructor,
(2) copy constructor,
(3) copy assignment operator,
(4) move constructor,
(5) move assignment operator.

“Rule of three:”
(1) destructor,
(2) copy constructor,
(3) copy assignment operator.
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Rule of five: (4) Move constructor

The move constructor is called when the 
content of an old object can be shifted to a 
new object that is allocated and initialized 
(e.g., before we deallocate the old object).

class T
{
public:
   T() { this->p = new S[1000](); }

   T(T&& old) {
      this->p = old.p;
      old.p = nullptr;
   }
   …

private:
   S* p …
}

T::T(T&& old) { … }

A shallow copy of the 
pointer to the content is 
good enough; after the 
action, the content exists 
in memory only once!

Attention: Right after the 
move constructor for 

“this”, the destructor of 
“old” might be called.

Remove all pointers to 
the content from old, so 

that it does not get 
deallocated!

T func(…) {
   T tfirst;
   …
   return tfirst;
   // the destructor will be called
}

int main() {
   // but before, call the move constructor
   T tsecond = std::move( func(…) );
}

Typical use case: Efficient 
handover of content 

returned by a function.
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Move constructor: Why can it be advantageous?

Copy constructor + destructor:

If there is no move constructor, or 
the compiler does not enforce a 
move, first all the content is copied 
(deep copy); the old container is 
probably deallocated right after.

This is an expensive operation whenever 
there is a substantial amount of data. All 
data are copied, unnecessarily, since at the 
end they still exist only once in memory.

old newdatadata

Move constructor + destructor:

The move constructor is used to 
make a new container own the data 
without copying the data. A shallow 
copy is made, and the data are 
detached from the old container.

The shallow copy is an inexpensive 
operation. If the data exist once in memory 
both before the operation and after, why 
copy them from one place to another?

old newdata

0
0
0
0

Example file: copying-and-moving.zip
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Rule of five: (5) Move assignment operator

The move assignment operator relates to the move constructor the same way 
as the copy assignment operator relates to the copy constructor.

T func(…) {
   T tfirst;
   …
   return tfirst;
   // the destructor will be called
}

int main() {
   T tsecond;
   …
   // but before, call the move assignment operator
   tsecond = std::move( func(…) );
}

T& T::operator=(T&& old) { … } old thisdatadata

old thisdata

old thisdata

0
0
0
0

constructor called

tsecond exists already

Example file: copying-and-moving.zip
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Templates: Parameterized class definitions

We have already seen the STL templates: The same container implementation 
can be used for different types of contained objects, such as list<float> and 
list<double>. We can define our own class templates in this way:

template<typename T> class SinglyLinkedListNode
{
public:
   T& get_item() { return this->item; }
   SinglyLinkedListNode<T>* get_next() const { return this->next; }
   void set_item(T in_item) { this->item = in_item; }

private:
   T item;
   SinglyLinkedListNode<T>* next = nullptr;
   void set_next(SinglyLinkedListNode<T>* in_next) { this->next = in_next; }
};

attention with initializations

attention with split between 
header and object file; think about 

“what the compiler will do”

While there is only one source code for each template, object code is normally 
generated separately for each concrete version of it. (But not for the template!)

Example file: list-template.zip
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Templates for functions and methods

The same sort of syntax applies for parameterized function and method 
declarations and definitions. This includes cases with multiple parameters.

template<typename T>
   void SinglyLinkedList<T>::push_front(
      const T& pushed_item
) {
   SinglyLinkedListNode<T>* new_node

      = new SinglyLinkedListNode<T>;
   new_node->set_item(pushed_item);

   if(this->empty()) this->tail = new_node;
   else new_node->set_next(this->head);
   this->head = new_node;
}

template<typename SeqnT, typename ElmnT>
   void test_sequence(
      SeqnT* sqn, int n, int m,
      ElmnT a, ElmnT b, ostream* os
) {
   …
}

template<typename SeqnT, typename ElmnT>
   float test_with_time_measurement(
      SeqnT* sqn, int iterations, ElmnT a, ElmnT b
) {
      int sequence_length = 1000001;
      int deletions = 10;
      test_sequence(sqn, 100000, 10, a, b, &cout);
}

Example file: list-template.zip
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Graphs as non-sequential linked data structures

Sequential data structures arrange their items in 
a linear shape. Sometimes that is not the best 
solution, or it is not appropriate at all.

Linked data structures with a non-sequential 
shape are graphs, which includes the important 
special case of tree data structures.

A graph G = (V, E) is defined by its nodes V, 
which are also called vertices, and edges E that 
connect one node to another. Nodes and edges 
can be labelled to give the graph a meaning.

Graphs can be used to represent relations 
between objects, such as distances on a 
map, or as a knowledge graph.

Trees are often used as sorted data 
structures, for efficiency reasons.

cognitive step σ by 
which a obtains φ 
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data δ that allow a 
to conclude φ
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Data structure implementation: Adjacency lists

0

label next

adjacency 
list

1

2

3

node

empty 
list

empty 
list

list with pointers (or references)
to node 4 and node 5

(list of nodes to which 
there is an edge) 0

1

2

3

4

5

7

8

6

graph with
labelled nodes

9

In a graph, one node can be connected to multiple other nodes. An adjacency 
list (with various possible implementations) can be used to manage these links.

Doubly-linked version of this: Two lists, for incoming and for outgoing edges.
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Data structure implementation: Incidence lists

Doubly-linked version of this: Two lists, for incoming and for outgoing edges.

An incidence list is a list of edges to which a node is incident. For adjacency 
lists or incidence lists, various data structures can be used, e.g., dynamic arrays. 
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Data structure implementation: Adjacency matrix

Matrix-like data structures include two-dimensional arrays, i.e., arrays where 
the individual elements are accessed by double indexing. The most relevant 
use for graphs is the adjacency matrix. (Also possible: An incidence matrix.)

For a sparse graph, the vast majority of entries in the 2D array/matrix is “false”. 
Adjacency matrices are commonly only used when expecting a dense graph.

0

1

2

3

4

bool adj[5][5]={ {true, true, true, false, false},

{false,false, false, true, false},

{true, true, false, false, false},

{false,true, true, false, false},

{true, false, true, false, false} };

out of node 0

out of node 1

out of node 2

out of node 3

out of node 4
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Graph traversal

Traversal of graphs: Depth-first search and breadth-first search

depth-first search (DFS)

0

12

3 4

5

67

8

9

0

1

2

3

4

5

7

9

8

6

begin
here

breadth-first search (BFS)

begin
here

DFS always proceeds from the most recently detected node (LIFO).
BFS always proceeds from the node that was detected earliest (FIFO).

Note: Only elements to which there is a path from the initial node can be found.
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Graph traversal: Shortest paths (see also INF221)

For an example showing travel minutes 
between locations according to ruter, see 
the example code incidence-list-graph.zip.

The data structure employed in the code 
are incidence lists (for undirected graphs). 
Dijkstra’s algorithm is implemented.
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Example file: incidence-list-graph.zip
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Graph traversal: Shortest paths (see also INF221)

Oslo

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

33 12

7

21

21

43

60

30

63

27
13

29

26

root 
node

distance 7

distance 21 
via Ås

distance 84
via Moss

distance 37
via Ski

distance 19
via Ski

distance 48
via Moss

distance 64
via Moss

21 edge from Ås to Moss
28 edge from Ski to Moss
37 edge from Ski to Askim
48 edge from Moss to Fredrikstad
52 edge from Oslo to Drammen
64 edge from Moss to Horten
84 edge from Moss to Askim

priority queue data structure

distance 52
via Oslo

Example file: incidence-list-graph.zip

In each iteration, visit 
the detected node 
closest to the root.

Process all edges to 
which that node is 
incident, detecting 
any new undetected 
neighbours, and up-
dating tentative dis-
tances.
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I/O operator overloading

See example code io-operator-overloading.zip for the following.

Advice: Input & output methods/operators should use the same serialization.

Assume that for some class C, we have defined methods that write content to 
a stream, or that analogously read from a stream.

void C::out(ostream* target) const {
   *target << … ;
}

void C::in(istream* source) {
   *source >> … ;
}

ostream& operator<<(
   ostream& str, const C& x
) const {
   x.out(&str);
   return str;
}

istream& operator>>(istream& str, C& x)
{
   x.in(&str);
   return str;
}

You can convert this to overloaded I/O operator definitions:

Now you can use the operator << 
and the operator >> on objects of 
type C just like for numbers, etc.

Example file: io-operator-overloading.zip
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File input/output

We must serialize the data in order to store them in a file!

To transfer data through a communication channel as a message, the data 
items and their parts need to be serialized (ordered) in a well-defined way that 
is understood both by the sender and the receiver.

– As a contiguous chunk of memory, if the exchange is memory-based.
– As a file, if file I/O is the mechanism by which data are exchanged.

File stream objects can be used in order to read or write a file.

      // open in-filestream
      std::ifstream infile(argv[1]);

      // read graph object from file
      graph::UndirInclistGraph g;
      infile >> g;
      infile.close();

// file name given as command-line argument argv[1]

Example file: run-graph-example.cpp
(in incidence-list-graph.zip archive)
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Example code: Spheres in a box

N spheres of different types (with different radii) are positioned in a 3D system.

Evaluate the number of overlaps.

This can be a (very) simple model of a liquid or solid. It is much easier to 
implement, and faster to compute, than more realistic molecular models.

Example file: repulsive-spheres.zip
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Conventions for the box in molecular simulation

Periodic boundary condition (PBC) Minimum image convention (MIC)

0
1

2

3
4

0’

4’

interact, count for potential (e.g., overlaps)
interact, don’t count for potential
don’t interact

PBC: Assume that the simulation box 
repeats periodically in all directions.

MIC: Each particle interacts only with 
closest replica of each other particle.
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Example code: Repulsive spheres with soft shielding

See implementation in repulsive-spheres.zip, sphere.cpp, line 51.

dist(i, j) ≥ (σi + σj)/2 dist(i, j) < (σi + σj)/4anything in between

one overlapno overlap counts as eight

int Sphere::check_overlap(const Sphere* other, const double box_size[3]) const
{
   // square distance between the centre of i and the centre of j
   double square_distance = 0.0;
   for(int d = 0; d < 3; d++)  {
      double dist_d = other->coords[d] - this->coords[d];

      // apply minimum image convention
      if(dist_d > 0.5*box_size[d]) dist_d -= box_size[d];
      else if(dist_d < -0.5*box_size[d]) dist_d += box_size[d];

      square_distance += dist_d*dist_d;
   }

   // is the square distance smaller than the square of the sum of radii?
   double sum_of_radii = 0.5 * (this->size + other->size);
   int overlap = 0;
   if(square_distance < 0.25*sum_of_radii*sum_of_radii) overlap = 8;  // soft shielding
   else if(square_distance < sum_of_radii*sum_of_radii) overlap = 1;  // normal overlap
   return overlap;
}

rij

uij

σij /2 σij

1

8

σij = (σi + σj)/2
“Lorentz mixing rule”

pair potential
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Example code: Generating a configuration

See generator code. Main scenario parameter:

– N, the number of spherical particles in the system; default: N = 4096

Additional benchmark scenario parameters (change only if you have a reason):

– packing fraction ξ, i.e., total sphere volume / box volume; default: ξ = 0.5

– ratio ζmax between largest and smallest sphere diameter; default:  ζ = 3

Remark: If the spheres are 
all of the same size, the 
densest packing (without 
any overlaps) has the 
packing fraction 0.7405.

This had been known as one 
of the “Hilbert problems.”

T. C. Hales, “A proof of the Kepler 
conjecture,” Ann. Math. 162(3): 
1065–1185, doi:10.4007/annals.

2005.162.1065, 2005.

Example file: generator.cpp (in repulsive-spheres.zip archive)

https://doi.org/10.4007/annals.2005.162.1065
https://doi.org/10.4007/annals.2005.162.1065
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1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html 
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