
INF205 15. april 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Concurrency

4.1 Parallel programming
4.2 Message passing interface
4.3 Domain decomposition

4.4 Robotics middleware
4.5 Concurrency theory
4.6 Parallel process models

215th April 2024INF205

Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???
???

???
state space

embarrassing
parallelism

domain
decomposition

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 15. april 2024

Digitalisering på Ås

Institutt for datavitskap

4 Concurrency

4.1 Parallel programming
4.2 Message passing
4.3 Domain decomposition
4.4 Robotics middleware

415th April 2024INF205

ROS message passing paradigm

Topic:
– Asynchronous n-to-n communication channel
– Publisher nodes can publish to the topic, all subscriber nodes can read

Service:
– Synchronous one-to-one communication
– One node requests another node and waits until the response comes

Action:
– Asynchronous request from one node to another node

MPI follows the SPMD approach (“single program, multiple data”), whether it
is SIMD (“single instruction”) or MIMD (“multiple instruction”) parallelization.

In ROS, it is MPMD and therefore MIMD:
Different processes (nodes) have their own codes and binary executables.

Communication in ROS can be categorized as follows:

515th April 2024INF205

1S. Macenski et al., Science Robotics 7(66): 2, 2022. Open access preprint: arXiv:2211.07752 [cs.RO]

ROS message passing paradigm

ROS calls its parallel processes nodes (do not need to be separate machines).
Communication scheme as summarized in the ROS 2 paper:1

https://arxiv.org/abs/2211.07752

6

ROS message passing paradigm

In a ROS 2 communication graph, nodes and communication patterns are
connected by edges that describe the direction of the data flow:

Source: https://docs.ros.org/en/rolling/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html

ROS calls its parallel processes nodes (do not need to be separate machines).

https://docs.ros.org/en/rolling/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html

7

What has ROS been designed for?

1S. Macenski et al., Science Robotics 7(66): 2, 2022. Open access preprint: arXiv:2211.07752 [cs.RO].
2https://micro.ros.org/

Despite the name, ROS (“robot operating system”) is not an operating system.
It is a library that provides a middleware, algorithms, and developer tools.

Requirements addressed by ROS 2 (see the ROS 2 paper1 for more detail):

Distribution: In a distributed system, there are no single points of failure.
With ROS 2, you can do distributed programming, with MPI you cannot.

Asynchrony: “messages […] are communicated asynchronously, creating an
event-based system” (as discussed in Sections “4.5” and “4.6” of this lecture).

Embedded systems: For robotics applications that include “small embedded
devices,” there is a special implementation called micro-ROS: ROS 2 for
microcontrollers.2

https://arxiv.org/abs/2211.07752
https://micro.ros.org/

8

ROS 2 installation

Documentation: http://docs.ros.org/

Active ROS 2 distributions:

Installation by adding http://packages.ros.org/ros2/ubuntu repository to apt.

The standard procedure for compiling code that uses ROS 2 requires cmake.

recommended for
robot development

latest stable version development version
(“will at times include
breaking changes”)

http://docs.ros.org/
http://packages.ros.org/ros2/ubuntu
http://docs.ros.org/en/humble
http://docs.ros.org/en/iron
http://docs.ros.org/en/rolling

9

ROS 2 installation (Ubuntu-like system)

http://docs.ros.org/en/rolling/Installation/Ubuntu-Install-Debians.html

Packages to be installed:
– ros-base
– ros-desktop

Bash script to be loaded at each use:
source /opt/ros/rolling/setup.bash

Simple test using two default nodes:
ros2 run demo_nodes_cpp talker
ros2 run demo_nodes_cpp listener

Installation by adding http://packages.ros.org/ros2/ubuntu repository to apt.

The standard procedure for compiling code that uses ROS 2 requires cmake.

development version
(“will at times include
breaking changes”)

http://docs.ros.org/en/rolling/Installation/Ubuntu-Install-Debians.html
http://packages.ros.org/ros2/ubuntu
http://docs.ros.org/en/rolling

10

ROS 2 package creation

A ROS2 C++ package for compilation supported by cmake can be created by

ros2 pkg create --build-type ament_cmake prjname --dependencies rclcpp …

This creates a package XML file and an input file for cmake.
XSD metadata schema http://download.ros.org/schema/package_format3.xsd

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
 <name>prjname</name>
 …
 <license>CC BY-NC-SA</license>
 <buildtool_depend>ament_cmake</buildtool_depend>
 <depend>rclcpp</depend>
 …
</package>

package.xml

1http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

… for the example,1 add example_interfaces here

example:1 <depend>example_interfaces</depend>

e.g. cpp_srvcli

Material: ros-nodes-howto.zip.

http://download.ros.org/schema/package_format3.xsd
http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

11

Service example1–3

Node acting as a server

shared_ptr<Node> node
 = Node::make_shared("server_name");
node->create_service<...>(
 "service_name", &fct
);

add_executable(
 server src/add_two_ints_server.cpp
)
ament_target_dependencies(
 server rclcpp example_interfaces
)

add_executable(
 client src/add_two_ints_client.cpp
)
ament_target_dependencies(
 client rclcpp example_interfaces
)

install(
 TARGETS server client
 DESTINATION lib/${PROJECT_NAME}
)

CMakeLists.txt

Node acting as a client

shared_ptr<Node> node
 = Node::make_shared("client_name");
auto client
 = node->create_client<...>("service_name");
// … create request …
auto result = client->async_send_request(request);

3http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

1http://docs.ros.org/en/rolling/p/rclcpp/generated/
2https://docs.ros.org/en/foxy/Tutorials/Intermediate/Writing-an-Action-Server-Client/Cpp.html

Material: ros-nodes-howto.zip.

http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html
http://docs.ros.org/en/rolling/p/rclcpp/generated/
https://docs.ros.org/en/foxy/Tutorials/Intermediate/Writing-an-Action-Server-Client/Cpp.html

12

Example1

How to test the ros-nodes-example:

– Compile the client and server codes using “colcon” (which calls cmake).
• You may need to install cmake first.

– Run “server” on one terminal (or one computer in the network).
– Run “client x y” on another.
– They should interact, and the addition x+y should be performed.

Disclaimer: If you use ROS 2 for your work and it leads to a publication (or
master thesis), include a citation to the reference S. Macenski et al., Science
Robotics 7(66): eabm6074, doi:10.1126/scirobotics.abm6074, 2022.

1http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

Material: ros-nodes-howto.zip.

http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

INF205 15. april 2024

Digitalisering på Ås

Institutt for datavitskap

Presentation scheduling:

Fifth worksheet and

programming projects

https://terminplaner6.dfn.de/b/44a1342e7c38364da7b75643dd8f86f3-684741

14

Tutorial schedule: Second half of the semester

Week 12
Tutorial session attended by two people

Week 13
Easter break – no tutorial

Week 14
Tuesday: Deadline for worksheet 4 – Wednesday: Presentations on worksheet 4

Week 15
Tutorial session attended by zero people

Week 16
No tutorial session this Wednesday

Week 17
Tuesday: Deadline for worksheet 5 – Wednesday: Presentations on worksheet 5

Week 18
Wednesday falls on Labour Day – no tutorial

Week 19
Presentations of the programming projects: Both on Monday and Wednesday

https://terminplaner6.dfn.de/b/44a1342e7c38364da7b75643dd8f86f3-684741

15

Programming project groups

Listing according to https://nmbu.instructure.com/courses/10489/groups:

Group 1
Hallvard H. Lavik Kim Son Ly

Group 3
Trygve B. Nomeland Esther M. Zijerveld

Group 5
William F. B. Dahl Natnael K. Habte
Amanda S. Halvorsen Kristoffer Romsaas
Nicolai S. Terland

Group 7
Mina Therese Gjefle

Group 9
Isak Vartdal-Gjerde

Group 11
Agnes Agersborg

Group 15
Henrik Røiseland Yngve R. Skaug

Group 2
Oliver F. Aunan Håkon Bråten
Mathias J. Dyrén Brage H. Ringheim

Group 4
Karan Kumar Liibaan H. Osman

Group 6
Ragne Wiklund

Group 8
Bjørn-Eirik Roald

Group 10
Vilde R. Dale Vishnupriya Jayachandran
Jon Kastdalen Nada S. Mahamed

Group 12
Endre M. Åsgard

Plan: Each group to present 6 minutes, followed by 3 minutes for questions.

Monday, 6th May 2024 Wednesday, 8th May 2024

https://nmbu.instructure.com/courses/10489/groups

INF205 15. april 2024

Digitalisering på Ås

Institutt for datavitskap

E-R diagrams on draw.io

17

E-R diagrams on draw.io and Chowlk1, 2

1M. Poveda Villalón et al., in Proc. VOILA23, CEUR Works. Proc. 3508: 2 (link to paper), 2023.

2Chowlk template: https://chowlk.linkeddata.es/static/resources/chowlk-library-complete.xml

 Lightweight version: https://chowlk.linkeddata.es/static/resources/chowlk-library-lightweight.xml

The draw.io tool can be used for E-R diagrams using a variety of conventions.

With Chowlk by Poveda Villalón et al.,1, 2 these can be converted to ontologies.

https://ceur-ws.org/Vol-3508/paper2.pdf
https://chowlk.linkeddata.es/static/resources/chowlk-library-complete.xml
https://chowlk.linkeddata.es/static/resources/chowlk-library-lightweight.xml
https://chowlk.linkeddata.es/examples.html

INF205 15. april 2024

Digitalisering på Ås

Institutt for datavitskap

4 Concurrency

4.1 Parallel programming
4.2 Message passing
4.3 Domain decomposition
4.4 Robotics middleware
4.5 Concurrency theory

19

States and transitions (events)

Terminology related to concurrency is often taken from the domain of discrete
event systems (for example, finite automata). Adopting such an approach:

– A system can be in any of a finite number of states.
– Events, or transitions between states, are thought of as instantaneous.
– A concurrent process is a (partially) temporally ordered set of events.

– Two events or transitions t and t’ can be …
• … concurrent whenever they are both enabled (i.e., both can occur),

one does not inhibit the other, and t·t’ has the same outcome as t’·t;
in other words, they are concurrent if we don’t say which comes first.

• … causally dependent if they both occur, and it is important to say
which comes first, either because only one order is possible or
because it will have an impact on the outcome.

– Limitation: This model cannot make two transitions strictly synchronous.

20

Traces:1 Partially ordered sets of events

Dependence/independence between actions & events in an enterprise system:

a) Updated raw sensory data ingested into knowledge base
b) Data analysis on raw sensory data, creating aggregated data
c) Read access to raw sensory data by a user
d) Read access to aggregated data by a user

Events that are dependent can never occur concurrently.
Events are independent if they are commutative: bc = cb.

In a particular execution or process, if it is unsubstantial in what order two
events occur, they are concurrent: Below, e.g., the first and second c-d pairs:

b
a

c
d

ab ≠ ba

depen-
dence

relation

ac

b

c

dd Hasse diagram for the trace1

cacdbd = cdacbd = dcabdc = …

3Also called Mazurkiewicz traces after Polish mathematician Antoni Mazurkiewicz.

21

Diagrams for partially ordered sets

Two events are directly or indirectly causally dependent
if one is specified to occur (conclude) before the other
occurs (begins). Above: e and a are indirectly dependent.

Events are concurrent if they are not directly or indirectly
causally dependent – it does not matter which occurs first.
Above: e and a are concurrent.

By convention, Hasse diagrams are often used to denote causal dependency
of events. These diagrams remove any indirect or redundant dependencies:

a

d

e

b

c

b

ae

a

d

e

b

c

b

ae

Hasse diagramnot a Hasse diagram

This notation only
shows the transitions
(events). The states
(configurations) of the
system are not shown.

Attention

22

State-transition diagrams

In a state-transition diagram, two concurrent transitions give rise to “diamond”
patterns. More than two concurrent transitions lead to (hyper-)cube patterns:

e

eb

eba

ebe

ebae

ebd

ebad

ebde

ebade

ebadec

ebadeb

ebadebc

a

d

e

b

c

b

ae

Hasse diagram

b
d

d

d

e e

e e

da a

a a
b

bc

c

ebadebcab

Observation: With n concurrent events, we
obtain 2n states, making it prohibitively
expensive to explore the whole state space.
(“State explosion problem”.)

ε

e

INF205 15. april 2024

Digitalisering på Ås

Institutt for datavitskap

4 Concurrency

4.1 Parallel programming
4.2 Message passing
4.3 Domain decomposition
4.4 Robotics middleware
4.5 Concurrency theory
4.6 Parallel process models

24

Petri nets

Components of a Petri net: places transitions tokens arc

2

2 1

11

1

p0

p0

t1
p2

p3
p0 t0

t0

p1

Semantics of this net:

Transition t0 can only be fired if place p0

contains at least two tokens. Firing t0

will take away two tokens from p0 and

add one token to p3.

Transition t1 can only be fired if both p0 and p1 each contain at least one token.

It removes one token from each, and adds one token to place p2.

25

Petri nets: Example

– Transitions can be fired in the following order: t0t0t1t0t1t0t1t0,

t0t0t1t1t0t0t1t0, t0t1t0t0t1t0t1t0, t0t1t0t1t0t0t1t0, t1t0t0t0t1t0t1t0, and

t1t0t0t1t0t0t1t0. At that point, respectively, a deadlock is reached.

– The net is bounded: There is a limit to the number of tokens per place.

2

t0 t1
p0

p1
p2

t0 t0

t1 t1

t0

t0 t1
t0

firing sequence

26

Petri nets and synchronous processes

Two subprocesses are synchronous (also, “coupled”) if it is specified that they
must overlap temporally, i.e., they must at least in part run at the same time.

2

p0
p2t0

p1 p3
t1

2

t2

t3

Note: Synchronicity (“coupling” – subprocesses must overlap) vs. direct causal
dependency (“linking” – may not overlap) vs. concurrency (order unspecified).

t1

t0

firing sequence
(Hasse diagram)

start of subprocess A

start of subprocess B end of subprocess B

end of subprocess A

t3

t2

Petri net representing two synchronous subprocesses A and B

2715th April 2024INF205

Petri net editor

PIPE tool for editing/simulating Petri nets: http://pipe2.sourceforge.net/

http://pipe2.sourceforge.net/

2815th April 2024INF205

Petri nets in relation to BPMN
BPMN: Business Process Model and Notation

– XML input/output of workflows1 based on an XML schema (XSD)
– Hierarchical inclusion of a subworkflow within an overarching workflow
– Orchestration via process automation systems2 (e.g., Camunda)

– … and there are algorithms that translate BPMN into Petri nets:3

1https://www.omg.org/spec/BPMN/2.0.2/PDF. 2Ruecker, Practical Process Automation, O’Reilly, 2021.
3U. Mutarraf et al., Adv. Mech. Eng. 10(12), doi:10.1177/1687814018808170, 2018.

https://www.omg.org/spec/BPMN/2.0.2/PDF
https://dx.doi.org/10.1177/1687814018808170

INF205 15. april 2024

Digitalisering på Ås

Institutt for datavitskap

Conclusion

3015th April 2024INF205

Weekly glossary concepts

What are essential concepts from this lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???

???

???

distributed system

trace

Petri net

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 15. april 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Concurrency

4.1 Parallel programming
4.2 Message passing interface
4.3 Domain decomposition

4.4 Robotics middleware
4.5 Concurrency theory
4.6 Parallel process models

