
INF205 22. april 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

5 Production

5.1 Performance metrics
5.2 Greedy vs. backtracking
5.3 Load balancing

5.4 CMake
5.5 HPC deployment
5.6 MPI input/output

222nd April 2024INF205

Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???

???

???

distributed system

trace

Petri net

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 22. april 2024

Digitalisering på Ås

Institutt for datavitskap

5 Production

5.1 Performance metrics

422nd April 2024INF205

Requirements: The traditional view

In most cases, discussion of computational resources limits itself to “space”
and “time.” This is also motivated by tradition in theoretical computer science.
In practice, then, time usually becomes the main performance metric, whereas
space becomes the main bottleneck (memory access, communication, file I/O).

Strong scaling (Amdahl, constant problem size) on parallel architectures:
– Runtime reduction as number of processes increases (ideally, linear).
– Total CPU time increase as there are more processes (ideally, none).
– Rate of CPU operations (e.g., FLOP/s) as fraction of peak performance.
– Amdahl’s law: Deterioration of performance at some point is inevitable.

Weak scaling (Gustafson, proportional problem size) on parallel architectures:
– CPU time per problem size as problem and core usage are scaled up.
– Runtime increase during the scale-up.
– Rate of CPU operations (e.g., FLOP/s) as fraction of peak performance.
– Some algorithms and codes don’t show a major decay in these metrics.

522nd April 2024INF205

Requirements: The traditional view

Time, in theory:
– Number of steps executed by a Turing machine

(or similar formalisms, such as random-access machines)
– Number of statements to be executed when going through the code

Time, in practice:
– CPU time, i.e., number of cores × measured runtime of the program

In complexity theory, the theoretical metrics are used to define computational
complexity classes, such as DTIME(f(n)) and DSPACE(f(n)) for deterministic
O(f(n)) time and space, respectively, as function of the problem size n.

Space, in theory:
– Legth of tape used by a Turing machine

(or number of registers used by a random-access machine)
– Number of elementary variables, or their total size in bytes, in the code

Space, in practice:
– Actual memory use measured during program execution

6

Economic metrics

Investment and operational costs can be
considered. For an analysis of investment
costs1 to be reasonably actionable, it must
include multiple representative use cases.

Operational costs usually also have a major
ecological aspect (computational and cooling
electricity cost). They might be taken into ac-
count for scheduling/workflow management.

Example on the right: C. Kutzner et al.,
“More bang for your buck: Improved
use of GPU nodes for GROMACS
2018,” J. Comp. Chem. 40(27): 2418–
2431, doi:10.1002/jcc.26011, 2019.

https://dx.doi.org/10.1002/jcc.26011

7

Ecological and socioeconomic metrics

How about bitcoins and similar blockchain technologies?

From A. L. Goodkind et al., Appl. Econ. Lett., doi:10.1080/13504851.2022.2140107, 2022.

https://dx.doi.org/10.1080/13504851.2022.2140107

8

Ecological and socioeconomic metrics

How about bitcoins and similar blockchain technologies?

From J. Sedlmeir et al., Bus. Inf. Syst. Eng. 62: 599, doi:10.1007/s12599-020-00656-x, 2020.

Energidepartementet (energifaktanorge.no), “I 2023 ble det produsert 154 TWh kraft i Norge.”

electric power production of Norway

https://dx.doi.org/10.1007/s12599-020-00656-x
https://energifaktanorge.no/norsk-energiforsyning/kraftforsyningen/
https://energifaktanorge.no/norsk-energiforsyning/kraftforsyningen/

9

Ecological and socioeconomic metrics

Key performance indictators (KPIs) for ecological performance1 can include:

– Abiotic-resource depletion potential (ADP)
– Cumulative energy consumption
– Greenhouse warming potential, including from use of refrigerants
– Water consumption
– DCiRE: Contribution of building infrastructure to these categories

1B. Schödwell, R. Zarnikow, KPI4DCE report, UBA no. 19/2018, pp. 25, 154, 2018.

Blue Angel: “Type I environmental label” (ISO 14024) based
on full life-cycle-analysis, targeting customers.2

EC explores introduction of additional Type II and III labels.3

3EC report “Study on Greening Cloud Computing […],” doi:10.2759/116715, pp. 128, 289, 2022.

2See e.g. https://www.hlrs.de/about/certifications.

https://dx.doi.org/10.2759/116715
https://www.hlrs.de/about/certifications

10

Ecological and socioeconomic metrics

p. 98, “Study on Greening Cloud Computing […],” EC report, doi:10.2759/116715, 2022.

https://dx.doi.org/10.2759/116715

INF205 22. april 2024

Digitalisering på Ås

Institutt for datavitskap

5 Production

5.1 Performance metrics
5.2 Greedy ./. backtracking

12

Algorithm design strategies

Design strategies concern algorithm and code development at a more
abstract level than that of its implementation. They are established approaches
for designing algorithms; they all have their own strengths and weaknesses.

– Brute force: Check all possible solutions, determine the right/best one.
– Greedy algorithms: Build the solution step by step until it is complete.
– Decomposition by divide-and-conquer or by dynamic programming.

Brute force

Greedy
algorithms

Decomposition
techniques

Easy to implement
and to verify

Easy to implement,
often very efficient

Powerful by reduction
to subproblems

Scales with size of solution space,
often forbiddingly expensive

Not all problems are accessible
to this kind of approach

Requires a thorough analysis of
the problem and its subproblems

13

Algorithm design strategy: Greedy algorithms

Greedy algorithms are based on the idea of making the best local
improvement (i.e., the best immediately visible small change) to a partial
solution. They consider one candidate solution only and build it up gradually.

Image source: BBC

Image source: City College Norwich

Strength: Systematic and
easy to implement.

Weakness: It does not solve all problems correctly; but even then, it might
return an acceptable suboptimal result or an approximation to the solution.

14

Problems for which greedy algorithms work

Example: Selection sort
– Initially, we cannot assume any part of the list to be sorted.

– Search for the smallest element of the list and move it to position 0;
now, the list is sorted* up to index 0. It is unsorted** from 1 onward.

– In step k, go through the whole unsorted part, find the smallest of its
elements, and move it to the end of the sorted part.

Image source:
Wikipedia

*It contains the smallest
element.

**And it contains the n–1
greatest elements, for
problem size n.

15

Problems for which greedy algorithms don’t work

Constructing a solution incrementally, step by step, is not always correct.

Greedy algorithms will produce an incorrect or suboptimal result whenever
the overall (“global”) solution does not consist of parts that are best “locally.”

Example: Autocomplete problem

“Computational thinking is the best way to
get the ball rolling in the morning and the
first one is the first one for the first time in
the morning …”

To be fair, these are not all “locally optimal”
incremental improvements. But even if they
were, the word-by-word method would not
lead to the globally optimal sentence as
defined through some well-defined metric.

16

Greedy algorithm + backtracking

Greedy (priorization) + DFS
When exploring the state space
using DFS (i.e., with backtracking),
follow the most promising path first:
The greedy solution. Then, follow
all other options in order of their
expected outcome.

Problem from the example code
Cost function1 f(x) with argument:

– int x[4], values 0 to 999
– (parameter space size 1012)

Return value between 0.0 and 6.0.
– minimize (aim: close to 0.0)
– accept solutions below a

threshold (default 0.00666)

Example file: backtracking-vs-metropolis.zip

– If the problem can be solved by a
greedy algorithm, no backtracking
will be needed. The program
produces the greedy solution first.

– Different paths are prioritized
according to some metric such as
how “promising” they look. This
needs to be defined and
implemented.

– If necessary, the whole state space
(parameter space) will be explored.
Then this becomes equivalent to
the brute force method.

1Other names (used instead of cost function) include
loss function, potential, and minimization objective.

INF205 22. april 2024

Digitalisering på Ås

Institutt for datavitskap

Remark on the
Metropolis algorithm

18

The code, visualization, etc., here are
discrete (test moves by integer dis-
tances) because the problem is discrete.

For a problem defined over a continuous
space, you must use test moves suitable
for sampling that space – a continuum.

Metropolis Monte Carlo algorithm

Parameters of the method:
– Temperature T
– Maximum test-move distance s

(go up to ± s in each dimension)

Position before step is x = (x0, …, xk–1).

Note that in the example problem, k = 4.

For each 0 ≤ d < k, determine a random
value ∆xd between –s and +s. The new test

coordinate is xd = xd + ∆xd.

Determine the change of the cost function:
∆f = f(x) – f(x). If ∆f ≤ 0, accept the test move.
If ∆f > 0, accept with probability exp(–∆f / T).

If and only if the test move was accepted,
take over x as the new value for x.

Example file: backtracking-vs-metropolis.zip

present position; max. distance 3:
possible new positions after test move

19

Simulated annealing

When applying the MC method outside of physics, the temperature T does
not have any physical meaning, it is just a tuning parameter.

For minimization problems,
– high T means that the configuration space is sampled more evenly

(we don’t penalize a large increase in cost ∆f very severly);

– low T means that we mostly restrict ourselves to local optimization
(where there is a barrier between basins corresponding to multiple local optima, that
is harder to overcome, since the increase ∆f is normalized by T, which now is small).

Simulated annealing is a heuristic that uses this to our favour when sampling a
space where we expect multiple local minima:

– Begin with a high temperature to explore the whole space,
– close in on the local minimum by continuing at a low temperature.

(The example code goes through repeated cycles of this, using three T levels.)

Example file: backtracking-vs-metropolis.zip

INF205 22. april 2024

Digitalisering på Ås

Institutt for datavitskap

5 Production

5.1 Performance metrics
5.2 Greedy ./. backtracking
5.3 Load balancing

21

Requirements: The traditional view

See also G. Dlamini et al., Inform. Sci. 582, 767–777, 2022, for a com-
parison of sorting algorithms with respect to energy consumption metrics.

insertion sort + binary search

simple insertion sortselection sort

mergesort
O(n log n)

O(n2)

22

Limitations of the traditional view

mergesort

Observation

The asymptotic performance of
selection sort, O(n²), is worse than

that of mergesort, O(n log n).

Asymptotic: For large values of n.

However, selection sort runs faster for lists
with a moderate number of elements.

selection sort

23

Quantitative requirements modelling

Idea and prerequisites:

– The parameter space or domain of the requirements model is well
defined, accounting for type and size of the input or use case and the
execution conditions of the code (such as number of processes).

– We build a correlation or closed expression that serves as a model of the
code, predicting its computational resource requirements. This can be:
• Purely predictive, based on a theoretical analysis of the code.

(Can always be done for a simplified model, if no data are available.)
• Regression/parameterization of a model, known to be qualitatively

right, to performance data. (Counts as supervised machine learning.)
• Unsupervised machine learning from performance data.

Discussion: For what purpose can it be helpful to have a quantitative
requirements model? In what ways might we use it in practice?

24

Quantitative requirements modelling

1S. Shudler et al., in Proc. ESPT-VPA 2017&18, doi:10.1007/978-3-030-17872-7_8, 2019.

https://dx.doi.org/10.1007/978-3-030-17872-7_8

25

Load balancing

Requirements modelling can be used to predict how the way in which the
domain is decomposed, for a given input case/scenario, influences the load of
each of the parallel processes.

Usually, no quantitatively accurate requirements model exists. Even then, a
rough approximation can be used as guidance for distributing the load.

Example scheme: Recursive bisection
(with “k-dimensional tree,” k = 3).

From the top (whole domain) down to
the bottom (single process), split the
volume recursively into parts such that
processes will receive a similar load.

Alternate between spatial dimensions.

2622nd April 2024INF205

Dynamic load balancing

Observations:

1) Performance models are not completely accurate. Moreover, they will
usually neglect some of the parameters that influence the runtime.

2) The actual resource requirements will not always be the same for given
parameter values. There can be a non-negligible statistical uncertainty.

3) Load can change over runtime, e.g., from a changing density profile.

4) Anything can occur on a node in the background, or at the hardware
level (poor cooling, needs to be clocked down, etc.). This cannot be
reflected in the performance model, and it can change at runtime.

Execution times on HPC infrastructures are of the order of hours to days. The
value of the consumed resources is substantial.

Therefore, it can be worth the effort to readjust the decomposition dynamically.

2722nd April 2024INF205

Dynamic load balancing algorithms

Reconstruct decomposition,
e.g., every 10000 steps in a
molecular dynamics simulation.

recursive bisection diffusive multisection1, 2

Gradual (“diffusive”) changes
can be implemented to adjust to
configuration and performance.

?

?

1S. Seckler, J. Computat. Sci. 50: 101296, doi:10.1016/j.jocs.2020.101296, 2021.
2J. Sablić, E-CAM project deliverable 4.6, 2020.

https://dx.doi.org/10.1016/j.jocs.2020.101296

INF205 22. april 2024

Digitalisering på Ås

Institutt for datavitskap

Discussion and questions
on the programming projects

INF205 22. april 2024

Digitalisering på Ås

Institutt for datavitskap

Conclusion

3022nd April 2024INF205

Weekly glossary concepts

What are essential concepts from this lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???
???

???

computational
complexity

load balancing
backtracking

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 22. april 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

5 Production

5.1 Performance metrics
5.2 Load balancing
5.3 Greedy vs. backtracking

5.4 CMake
5.5 HPC deployment
5.6 MPI input/output

