

Norges miljø- og biovitenskapelige universitet Digitalisering på Ås

Institutt for datavitenskap

INF205 Resource-efficient programming

5 Production

5.1 Performance metrics5.2 Greedy vs. backtracking5.3 Load balancing

5.4 CMake5.5 HPC deployment5.6 MPI input/output

Norwegian University of Life Sciences

Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.¹

¹https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

Noregs miljø- og biovitskaplege universitet

5 Production

5.1 Performance metrics

Requirements: The traditional view

Norwegian University of Life Sciences

In most cases, discussion of computational resources limits itself to "**space**" and "**time**." This is also motivated by tradition in theoretical computer science. In practice, then, *time usually becomes the main performance metric*, whereas *space becomes the main bottleneck* (memory access, communication, file I/O).

Strong scaling (Amdahl, constant problem size) on parallel architectures:

- Runtime reduction as number of processes increases (ideally, linear).
- Total CPU time increase as there are more processes (ideally, none).
- Rate of CPU operations (e.g., FLOP/s) as fraction of peak performance.
- Amdahl's law: Deterioration of performance at some point is inevitable.

Weak scaling (Gustafson, proportional problem size) on parallel architectures:

- CPU time per problem size as problem and core usage are scaled up.
- Runtime increase during the scale-up.
- Rate of CPU operations (e.g., FLOP/s) as fraction of peak performance.
- Some algorithms and codes don't show a major decay in these metrics.

Requirements: The traditional view

Time, in theory:

- Number of steps executed by a *Turing machine*
 - (or similar formalisms, such as random-access machines)
- Number of statements to be executed when going through the code

Time, in practice:

- CPU time, *i.e.*, number of cores × measured runtime of the program

Space, in theory:

- Legth of tape used by a Turing machine
 - (or number of registers used by a random-access machine)

 Number of elementary variables, or their total size in bytes, in the code Space, in practice:

Actual memory use measured during program execution

In **complexity theory**, the theoretical metrics are used to define computational **complexity classes**, such as DTIME(f(n)) and DSPACE(f(n)) for deterministic O(f(n)) time and space, respectively, as function of the problem size n. **INF205**

Economic metrics

Investment and operational costs can be considered. For an analysis of investment costs¹ to be reasonably actionable, it must include multiple representative use cases.

Operational costs usually also have a major ecological aspect (computational and cooling electricity cost). They might be taken into account for scheduling/workflow management.

Example on the right: C. Kutzner *et al.*, "More bang for your buck: Improved use of GPU nodes for GROMACS 2018," *J. Comp. Chem.* **40**(27): 2418-2431, doi:10.1002/jcc.26011, **2019**.

How about bitcoins and similar blockchain technologies?

Figure 2. BTC mining damages (climate plus human health) across US states. Panel **a** (left): total damages of BTC mining between 1 September 2019 to 31 December 2021. Panel **b** (right): average damages per BTC mined as a share of the market price of the coin. States in white did not mine BTC over this period according to the CBECI dataset.

From A. L. Goodkind et al., Appl. Econ. Lett., doi:10.1080/13504851.2022.2140107, 2022.

How about bitcoins and similar blockchain technologies?

Market capitalization and the computed bounds on energy consumption for the 5 highest valued Proof-of-Work cryptocurrencies. Note the logarithmic scale on the y-axis

A rough comparison of the order of magnitude of energy consumption per transaction for different architectures. A simple server can operate transactions with very low energy consumption. A typical non-blockchain, centralized system in applications will use a more complex database and backups, thus mildly increasing the energy consumption. A small-scale permissioned blockchain as used in cross-enterprise use-cases has a similar degree of redundancy, but some additional yet limited overhead due to, e.g., PoA consensus and more complex cryptographic operations. A non-PoW permissionless blockchain with a large number of nodes can already exhibit a significantly increased energy consumption due to the high degree of redundancy. However, compared to a major Proof-of-Work blockchain, energy consumption is still negligible

From J. Sedlmeir *et al.*, *Bus. Inf. Syst. Eng.* **62**: 599, doi:10.1007/s12599-020-00656-x, **2020**. Energidepartementet (energifaktanorge.no), "I 2023 ble det produsert 154 TWh kraft i Norge."

Key performance indictators (KPIs) for ecological performance¹ can include:

- Abiotic-resource depletion potential (ADP)
- Cumulative energy consumption
- Greenhouse warming potential, including from use of refrigerants
- Water consumption
- DCiRE: Contribution of building infrastructure to these categories

Blue Angel: "Type I environmental label" (ISO 14024) based on full life-cycle-analysis, targeting customers.²

EC explores introduction of additional Type II and III labels.³

¹B. Schödwell, R. Zarnikow, KPI4DCE report, UBA no. 19/2018, *pp.* 25, 154, **2018**. ²See *e.g.* https://www.hlrs.de/about/certifications.

³EC report "Study on Greening Cloud Computing [...]," doi:10.2759/116715, pp. 128, 289, **2022**.

Table 16: Overview of 71 selected metrics and 6 DC-relevant labelling or certification scheme

	Total DC		Total IT equipment		
Energy / P	ower	IT equipment: Server	IT equipment: Storage	IT equipment: Network	
	Green Energy Coefficient (GEC) = Renewable		IT-Power Usage Effectiveness (ITUE)		Energy / Power
	Total power licere Effectiveness (TUE)	Compute Power Efficiency (CPE)			
	Adaptability Power Curve (APC) & Adaptability	DC Fixed to Variable Energy Ratio (DC-FVER)			
	Power Curve at Renewable Energies (APC)	IT Productivity per Embedded Watt (IT-PEW)			
	Data Centre Adapt (DCA)	IT energy Productivity (ITeP)=Equipment Energy Productivity (EEP)			
	FS 205 200-2-1: KPI-	SPEC Power	SNIA Emerald™(ENERGY STAR [●] DC	Telecommunications Energy Efficiency	
	Facility Efficiency (FE)	SPEC SERTTM 2 (Server Energy	Storage /Ecodesign /German Blue	Ratio (TEER)	
	Corporate Average DC Efficiency (CADE)	Effectiveness Metric (SEEM) / ETSI EN 303	Angel/ISO IEC 24091)	Energy Consumption Rating (ECR)	
	DC Energy Productivity (DCeP)	470 / Energy Star Program for servers)	DC storage productivity - capacity	ECR Variable Load (ECR-VL)	
	DC energy efficiency and productivity (DC-EEP)	IT Asset Efficiency (ITAE)	(DCsPm)	Energy Efficiency Boble of Englanders	
	DC Performance Efficiency (DCPE)	Trasset Eniciency (Trac)		(CCCP)	
	DC Performance Per Energy (DPPE)	IT Energy Efficiency for servers (ITEEsv)	DC storage productivity -	(2226)	
	DC Workload Power Emclency (DWPE)	Space, Watts and Performance (SWaP)	Streaming (DCsP _{mb})		
	DC Fixed to Variable Energy Ratio (DC-FVER)	IT Equipment Utilisation for Servers	DC storage productivity –		
		(ITEUsy)	Transactional (DCsP _{io})		
Water	Water Usage Effectiveness (WUE): WUE _{site}	DC Compute Efficiency (DCcE)		Network Utilization (NET.)	
	Water Usage Effectiveness (WUE): WUEsource	Compute Litilization (CBLL)	Storage Utilization (STOR _U)	Network Odlization (NETU)	
Natural res	source	Memory Utilization (MEM)			
	Green Material Use (GMU)			Mastas	
Wastes Energy reuse effectiveness (ERE)		Electronics disposal efficiency (EDE)			wastes
	Energy Reuse Factor (EKF)	KPI4DCE: Server	KPI4DCE: Storage	KPI4DCE: Network	Environmental
	In-nouse Reuse Factor (IRF)	Cumulative Energy Efficiency (CEE)			Impacts
	Sustainable Heat Exploitation (SHE)		Cumulated Performance Efficiency (CPI	EX	
	Heat Usage Effectiveness (HUE)				
Environme	ental Carbon Usage Effectiveness (CUE)=Technology		Building infrastructure		
Impacts	Carbon Efficiency (TCE)	Cooling system	Bower feeding system	Other systems	
	Primary Energy (PE) Savings	Cooling system	Power reeding system	Other systems	France / Barren
	CO2 Savings Carbon Intensity per Lipit of Data (CILID)	Power usage effectiven	Power usage effectiveness (PUE)= Site Infrastructure Energy Efficiency ratio (SI-EER) = KPI _{TE}		
		DC Infrastructure efficiency (DCIE)= Facility Energy Efficiency (FEE)			
Data centre labelling or certifications		Cooling Efficiency Patio (CEP)			
		cooling Enciency Ratio (CER)	FUERCY STAR® for LIDSe		
	German Blue Angel	Energy Efficiency / Efficient Ratio (EER)	version 2.0		
	Certified Energy Efficiency Data Center Award (CEEDA)	Seasonal Energy Efficient Ratio (SEER)			
	EU Code of Conduct for DCs Best Practices	Coefficient of performance (COP)	Power load factor (PLF)		
	ENERGY STAR Score for DC (primary energy)	Cooling load factor (CLF)	ITU-T L-1320: EE ratio		
	Leadership in Energy and Environmental Design (LEED)	ITU-T L-1320: EE ratio			
	BREEAM (Building Research Establishment		KPIADCE: Infrastructure		Environmental
	BREEAM (Building Research Establishment Environmental Assessment Method)		KPI4DCE: Infrastructure		Environmental Impacts

p. 98, "Study on Greening Cloud Computing [...]," EC report, doi:10.2759/116715, **2022**.

Noregs miljø- og biovitskaplege universitet

5.1 Performance metrics5.2 Greedy ./. backtracking

INF205

Algorithm design strategies

Brute force	Easy to implement and to verify	Scales with size of solution space, often forbiddingly expensive
Greedy algorithms	Easy to implement, often very efficient	Not all problems are accessible to this kind of approach
Decomposition techniques	Powerful by reduction to subproblems	Requires a thorough analysis of the problem and its subproblems

Design strategies concern algorithm and code development at a more abstract level than that of its implementation. They are established approaches for designing algorithms; they all have their own strengths and weaknesses.

- Brute force: Check all possible solutions, determine the right/best one.
- **Greedy algorithms:** Build the solution step by step until it is complete.
- Decomposition by **divide-and-conquer** or by **dynamic programming**.

Algorithm design strategy: Greedy algorithms

Greedy algorithms are based on the idea of making the **best local improvement** (*i.e.*, the best immediately visible small change) to a partial solution. They consider **one candidate solution** only and build it up gradually.

Image source: City College Norwich

Strength: Systematic and easy to implement.

Image source: BBC

Weakness: It does not solve all problems correctly; but even then, it might return an acceptable suboptimal result or an approximation to the solution.

Problems for which greedy algorithms work

Example: Selection sort

- Initially, we cannot assume any part of the list to be sorted.
- Search for the smallest element of the list and move it to position 0; now, the list is sorted* up to index 0. It is unsorted** from 1 onward.
- In step k, go through the whole unsorted part, find the smallest of its elements, and move it to the end of the sorted part.

*It contains the smallest element.

**And it contains the n-1 greatest elements, for problem size n.

Image source: Wikipedia

Problems for which greedy algorithms <u>don't</u> work

Constructing a solution incrementally, step by step, is not always correct.

Greedy algorithms will produce an incorrect or suboptimal result whenever the overall ("global") solution does not consist of parts that are best "locally."

Example: Autocomplete problem

"Computational thinking is the best way to get the ball rolling in the morning and the first one is the first one for the first time in the morning ..."

To be fair, these are not all "locally optimal" incremental improvements. But even if they were, the word-by-word method would not lead to the globally optimal sentence as defined through some well-defined metric.

Greedy algorithm + backtracking

<u>Greedy (priorization) + DFS</u>

When exploring the state space using DFS (*i.e.*, with backtracking), follow the most promising path first: The greedy solution. Then, follow all other options in order of their expected outcome.

<u>Problem from the example code</u> Cost function¹ $f(\mathbf{x})$ with argument:

- int x[4], values 0 to 999
- (parameter space size 10¹²)
- Return value between 0.0 and 6.0.
 - minimize (aim: close to 0.0)
 - accept solutions below a threshold (default 0.00666)

- If the problem can be solved by a greedy algorithm, no backtracking will be needed. The program produces the greedy solution first.
- Different paths are prioritized according to some metric such as how "promising" they look. This needs to be defined and implemented.
- If necessary, the whole state space (parameter space) will be explored.
 Then this becomes equivalent to the brute force method.

¹Other names (used instead of *cost function*) include *loss function, potential,* and *minimization objective*.

Example file: backtracking-vs-metropolis.zip

Noregs miljø- og biovitskaplege universitet

Remark on the Metropolis algorithm

Metropolis Monte Carlo algorithm

Parameters of the method:

- Temperature T
- Maximum test-move distance s
 (go up to ± s in each dimension)

Position before step is $\mathbf{x} = (x_0, ..., x_{k-1})$. Note that in the example problem, k = 4.

For each $0 \le d < k$, determine a random value Δx_d between -s and +s. The new test coordinate is $\overline{x}_d = x_d + \Delta x_d$.

Determine the change of the cost function: $\Delta f = f(\overline{\mathbf{x}}) - f(\mathbf{x})$. If $\Delta f \leq 0$, accept the test move. If $\Delta f > 0$, accept with probability $\exp(-\Delta f / T)$.

If and only if the test move was accepted, take over $\overline{\mathbf{x}}$ as the new value for \mathbf{x} .

present position; max. distance 3: possible new positions after test move

The code, visualization, *etc.*, here are discrete (test moves by integer distances) *because the problem is discrete*.

For a problem defined over a continuous space, you must use test moves suitable for sampling that space – a continuum.

Example file: backtracking-vs-metropolis.zip

Simulated annealing

When applying the MC method outside of physics, the temperature *T* does not have any physical meaning, it is just a tuning parameter.

For minimization problems,

- high T means that the configuration space is sampled more evenly (we don't penalize a large increase in $\cot \Delta f$ very severly);
- low T means that we mostly restrict ourselves to local optimization (where there is a barrier between basins corresponding to multiple local optima, that is harder to overcome, since the increase Δf is normalized by T, which now is small).

Simulated annealing is a heuristic that uses this to our favour when sampling a space where we expect multiple local minima:

- Begin with a high temperature to explore the whole space,
- close in on the *local minimum* by continuing at a *low temperature*.

(The example code goes through repeated cycles of this, using three *T* levels.)

Example file: backtracking-vs-metropolis.zip

Noregs miljø- og biovitskaplege universitet

5.1 Performance metrics
5.2 Greedy ./. backtracking
5.3 Load balancing

Requirements: The traditional view

Limitations of the traditional view

Quantitative requirements modelling

Idea and prerequisites:

- The parameter space or **domain of the requirements model** is well defined, accounting for type and size of the input or use case and the execution conditions of the code (such as number of processes).
- We build a correlation or closed expression that serves as a model of the code, predicting its computational resource requirements. This can be:
 - Purely predictive, based on a theoretical analysis of the code. (Can always be done for a simplified model, if no data are available.)
 - Regression/parameterization of a model, known to be qualitatively right, to **performance data**. (Counts as supervised machine learning.)
 - Unsupervised machine learning from **performance data**.

Discussion: For what purpose can it be helpful to have a quantitative requirements model? In what ways might we use it in practice?

Quantitative requirements modelling

Table 2: 2-parameter models for the execution time of the ms2 application.

Model	Fixed parameters	Model	\bar{R}^2
T(n,m)	d=0.84,c=2.0,p=72	$4.41 + 8.03 \cdot 10^{-5} \cdot m \cdot n \cdot \log n$	0.99
T(p,m)	n=4,000, d=0.84, c=2.0	$6.6 + 3.21 \cdot m^2 - 0.42 \cdot m^2 \cdot \log p$	0.92
T(p,d)	$n=4,000,\ m=1,\ c=2.0$	$20.67-2.2\cdot\log p$	0.88
T(p,c)	n=4,000,m=1,d=0.84	$33.83 + 0.05 \cdot c^3 - 4.89 \cdot \log p$	0.79
T(n,c)	m=1, d=0.84, p=36	$-0.99 + 0.06 \cdot c^3 + 1.81 \cdot 10^{-5} \cdot \log^2 n$	0.95
T(m,c)	n=4,000, d=0.84, p=36	$-23.49 + 10.09 \cdot m + 0.22 \cdot c^3 \cdot m$	0.95

Table 3: 3-parameter models for the execution time of the *ms2* application.

Model	Fixed parameters	Model	\bar{R}^2
T(p,n,m)	d = 0.84, c = 2.0	$62.28 + 2.03 \cdot 10^{-8} \cdot m^2 \cdot n^{1.5} \cdot \log^2 n - 9.63 \cdot \log p$	0.83
T(n,m,c)	$d=0.84,\ p=72$	$9.24 + 5.71 \cdot 10^{-6} \cdot n \cdot \log n \cdot c^2 \cdot \log c \cdot m$	0.88

¹S. Shudler et al., in Proc. ESPT-VPA 2017&18, doi:10.1007/978-3-030-17872-7_8, 2019.

Load balancing

Requirements modelling can be used to predict how the way in which the domain is decomposed, for a given input case/scenario, influences the load of each of the parallel processes.

Usually, no quantitatively accurate requirements model exists. Even then, a rough approximation can be used as guidance for distributing the load.

Example scheme: **Recursive bisection** (with "k-dimensional tree," k = 3).

From the top (whole domain) down to the bottom (single process), split the volume recursively into parts such that processes will receive a similar load.

Alternate between spatial dimensions.

Norwegian University of Life Sciences

Dynamic load balancing

Observations:

- 1) Performance models are not completely accurate. Moreover, they will usually neglect some of the parameters that influence the runtime.
- 2) The actual resource requirements will not always be the same for given parameter values. There can be a non-negligible *statistical uncertainty*.
- 3) Load can *change over runtime*, e.g., from a changing density profile.
- 4) Anything can occur on a node in the background, or at the hardware level (poor cooling, needs to be clocked down, etc.). This cannot be reflected in the performance model, and it can change at runtime.

Execution times on HPC infrastructures are of the order of hours to days. The value of the consumed resources is substantial.

Therefore, it can be worth the effort to readjust the decomposition dynamically.

Norwegian University of Life Sciences

Dynamic load balancing algorithms

recursive bisection

Reconstruct decomposition, e.g., every 10000 steps in a molecular dynamics simulation.

diffusive multisection^{1, 2}

Gradual ("diffusive") changes can be implemented to adjust to configuration and performance.

¹S. Seckler, J. Computat. Sci. **50**: 101296, doi:10.1016/j.jocs.2020.101296, **2021**.

²J. Sablić, E-CAM project deliverable 4.6, **2020**.

INF205

22nd April 2024

Noregs miljø- og biovitskaplege universitet

Discussion and questions on the programming projects

INF205

Noregs miljø- og biovitskaplege universitet

Conclusion

Weekly glossary concepts

What are essential concepts from this lecture?

Let us include them in the INF205 glossary.¹

¹https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205

22nd April 2024

Norwegian University of Life Sciences

Norges miljø- og biovitenskapelige universitet Digitalisering på Ås

Institutt for datavitenskap

INF205 Resource-efficient programming

5 Production

5.1 Performance metrics5.2 Load balancing5.3 Greedy vs. backtracking

5.4 CMake5.5 HPC deployment5.6 MPI input/output

