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Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.’

???

trace

distributed system

222 Petri net

Thttps://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 22" April 2024


https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

Noregs milj@- og

U
M BI I biovitskaplege

universitet

) Production

5.1 Performance metrics

INF205 22. april 2024



r' I Norwegian University
- of Life Sciences

Requirements: The traditional view

!

In most cases, discussion of computational resources limits itself to “space’
and “time.” This is also motivated by tradition in theoretical computer science.
In practice, then, time usually becomes the main performance metric, whereas
space becomes the main bottleneck (memory access, communication, file 1/0).

Strong scaling (Amdahl, constant problem size) on parallel architectures:
— Runtime reduction as number of processes increases (ideally, linear).
— Total CPU time increase as there are more processes (ideally, none).
— Rate of CPU operations (e.g., FLOP/s) as fraction of peak performance.
— Amdahl’s law: Deterioration of performance at some point is inevitable.

Weak scaling (Gustafson, proportional problem size) on parallel architectures:
— CPU time per problem size as problem and core usage are scaled up.
— Runtime increase during the scale-up.
— Rate of CPU operations (e.g., FLOP/s) as fraction of peak performance.
— Some algorithms and codes don’t show a major decay in these metrics.
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Requirements: The traditional view

Time, in theory:
— Number of steps executed by a Turing machine
(or similar formalisms, such as random-access machines)
— Number of statements to be executed when going through the code
Time, in practice:
— CPU time, i.e., number of cores x measured runtime of the program

Space, in theory:
— Legth of tape used by a Turing machine
(or number of registers used by a random-access machine)
— Number of elementary variables, or their total size in bytes, in the code
Space, in practice:
— Actual memory use measured during program execution

In complexity theory, the theoretical metrics are used to define computational
complexity classes, such as DTIME( f(n)) and DSPACE( f(n)) for deterministic
O(f(n)) time and space, respectively, as function of the problem size n.

INF205 22" April 2024 5



Economic metrics
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Ecological and socioeconomic metrics

How about bitcoins and similar blockchain technologies?

0 100 200 300 100 0% 20%  10%  60%  80% 100% 120% 140%
Total damages (millions) Damages as a share of coin value

Figure 2. BTC mining damages (climate plus human health) across US states. Panel a (left): total damages of BTC mining between
1 September 2019 to 31 December 2021. Panel b (right): average damages per BTC mined as a share of the market price of the coin.
States in white did not mine BTC over this period according to the CBEC| dataset.

From A. L. Goodkind et al., Appl. Econ. Lett., doi:10.1080/13504851.2022.2140107, 2022.


https://dx.doi.org/10.1080/13504851.2022.2140107

Ecological and socioeconomic metrics

How about bitcoins and similar blockchain technologies?

electric power production of Norway
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A rough comparison of the order of magnitude of energy consumption per transaction for different architectures. A
simple server can operate transactions with very low energy consumption. A typical non-blockchain, centralized
system in applications will use a more complex database and backups, thus mildly increasing the energy
consumption. A small-scale permissioned blockchain as used in cross-enterprise use-cases has a similar degree of
redundancy, but some additional yet limited overhead due to, e.g., PoA consensus and more complex cryptographic
operations. A non-PoW permissionless blockchain with a large number of nodes can already exhibit a significantly
increased energy consumption due to the high degree of redundancy. However, compared to a major Proof-of-

Work blockchain, energy consumption is still negligible

From J. Sedlmeir et al., Bus. Inf. Syst. Eng. 62: 599, doi:10.1007/s12599-020-00656-x, 2020.
Energidepartementet (energifaktanorge.no), “l 2023 ble det produsert 154 TWh kraft i Norge.”
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Ecological and socioeconomic metrics

Key performance indictators (KPIs) for ecological performance’ can include:

— Abiotic-resource depletion potential (ADP)

— Cumulative energy consumption

— Greenhouse warming potential, including from use of refrigerants
— Water consumption

— DCIRE: Contribution of building infrastructure to these categories

Blue Angel: “Type | environmental label” (ISO 14024) based
on full life-cycle-analysis, targeting customers.?

EC explores introduction of additional Type Il and Ill labels.?

'B. Schodwell, R. Zarnikow, KPI4DCE report, UBA no. 19/2018, pp. 25, 154, 2018.
’See e.g. https://www.hlrs.de/about/certifications.
SEC report “Study on Greening Cloud Computing [...],” doi:10.2759/116715, pp. 128, 289, 2022.


https://dx.doi.org/10.2759/116715
https://www.hlrs.de/about/certifications

Ecological and socioeconomic metrics
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p. 98, “Study on Greening Cloud Computing [...],” EC report, doi:10.2759/116715, 2022.
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Algorithm design strategies

Brute force Easy to implement Scales with size of solution space,
and to verify often forbiddingly expensive
Greedy Easy to implement, Not all problems are accessible
algorithms often very efficient to this kind of approach
Decomposition Powerful by reduction Requires a thorough analysis of
techniques to subproblems the problem and its subproblems

Design strategies concern algorithm and code development at a more
abstract level than that of its implementation. They are established approaches
for designing algorithms; they all have their own strengths and weaknesses.

— Brute force: Check all possible solutions, determine the right/best one.
— Greedy algorithms: Build the solution step by step until it is complete.

— Decomposition by divide-and-conquer or by dynamic programming.

12



Algorithm design strategy: Greedy algorithms

Greedy algorithms are based on the idea of making the best local
improvement (i.e., the best immediately visible small change) to a partial
solution. They consider one candidate solution only and build it up gradually.

Image source: ity .Co//ege )Q;)rwich ___] _l _I . . _] _| =.

Strength: Systematic and
easy to implement.

Image source: BBC

Weakness: It does not solve all problems correctly; but even then, it might
return an acceptable suboptimal result or an approximation to the solution.

13



Problems for which greedy algorithms work

Example: Selection sort
— Initially, we cannot assume any part of the list to be sorted.

— Search for the smallest element of the list and move it to position 0;
now, the list is sorted* up to index 0. It is unsorted** from 1 onward.

— In step k, go through the whole unsorted part, find the smallest of its
elements, and move it to the end of the sorted part.

*It contains the smallest
element.

**And it contains the n-1
greatest elements, for
problem size n.

Image source:
Wikipedia




Problems for which greedy algorithms don’t work

Constructing a solution incrementally, step by step, is not always correct.

Greedy algorithms will produce an incorrect or suboptimal result whenever
the overall ("global”) solution does not consist of parts that are best “locally.”

Computational thinking is
Example: Autocomplete problem the best way to get the

ball rolling in the morning
© and the first

"Computational thinking is the best way to
get the ball rolling in the morning and the

, , , , _ , of one name v
first one is the first one for the first time in

<O

the morning ..." Computational thinking is
the best way to get the
To be fair, these are not all “locally optimal” ball rolling in the morning
: tal i ts. But T and the first one is the
incremental improvements. But even if they N T Loy ey ity

were, the word-by-word method would not O in the morning
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Greedy algorithm + backtracking

Greedy (priorization) + DFS

When exploring the state space
using DFS (i.e., with backtracking),
follow the most promising path first:

The greedy solution. Then, follow
all other options in order of their
expected outcome.

Problem from the example code

Cost function® f(x) with argument:
— int x[4], values 0 to 999
— (parameter space size 10'?)
Return value between 0.0 and 6.0.
— minimize (aim: close to 0.0)
— accept solutions below a

threshold (default 0.00666)

— If the problem can be solved by a

greedy algorithm, no backtracking
will be needed. The program
produces the greedy solution first.

Different paths are prioritized
according to some metric such as
how “promising” they look. This
needs to be defined and
implemented.

If necessary, the whole state space
(parameter space) will be explored.
Then this becomes equivalent to
the brute force method.

'Other names (used instead of cost function) include
loss function, potential, and minimization objective.

Example file: backtracking-vs-metropolis.zip 16
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Metropolis Monte Carlo algorithm

Parameters of the method: present position; max. distance 3:

— Temperature T possible new positions after test move

— Maximum test-move distance s 0000000
(go up to = s in each dimension)
O 000000

Position before step is x = (x,, ..., x,_,). N N N N N X )

Note that in the example problem, k = 4. 00 0000
Foreach 0 < d < k, determine a random 000000

value Ax  between -s and +s. The new test 0000 0O
coordinateis;d=xd+Axd. O 0000 0O
Determine the change of the cost function: The code, visualization, etc., here are
Af = f(x) - fix). If Af < 0, accept the test move. discrete (test moves by integer dis-
If Af > 0, accept with probability exp(-Af / T). tances) because the problem is discrete.

: For a problem defined over a continuous
If and only if the test move was accepted, :
space, you must use test moves suitable

take over x as the new value for x. . .
for sampling that space - a continuum.

Example file: backtracking-vs-metropolis.zip 18



Simulated annealing

When applying the MC method outside of physics, the temperature T does
not have any physical meaning, it is just a tuning parameter.

For minimization problems,

— high T means that the configuration space is sampled more evenly
(we don't penalize a large increase in cost Af very severly);

— low T means that we mostly restrict ourselves to local optimization
(where there is a barrier between basins corresponding to multiple local optima, that
is harder to overcome, since the increase Af is normalized by T, which now is small).

Simulated annealing is a heuristic that uses this to our favour when sampling a
space where we expect multiple local minima:

— Begin with a high temperature to explore the whole space,

— close in on the local minimum by continuing at a low temperature.

(The example code goes through repeated cycles of this, using three T levels.)

Example file: backtracking-vs-metropolis.zip 19
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average runtime in seconds

Requirements: The traditional view
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1( See also G. Dlamini et al., Inform. Sci. 582, 767-777, 2022, for a com-

parison of sorting algorithms with respect to energy consumption metrics.
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Limitations of the traditional view

. Observation

e The asymptotic performance of N

selection sort, O(n?2), is worse than
0.00020 that of mergesort, O(n log n).

Asymptotic: For large values of n.
0.00015 | ymp J

0.00010 1

mergesort selection sort

0.00005 1

average runtime in seconds

However, selection sort runs faster for lists
with a moderate number of elements.

0.00000 1

0 20 40 60 80 100
input list size
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Quantitative requirements modelling

Idea and prerequisites:

— The parameter space or domain of the requirements model is well
defined, accounting for type and size of the input or use case and the
execution conditions of the code (such as number of processes).

— We build a correlation or closed expression that serves as a model of the
code, predicting its computational resource requirements. This can be:
* Purely predictive, based on a theoretical analysis of the code.
(Can always be done for a simplified model, if no data are available.)
* Regression/parameterization of a model, known to be qualitatively
right, to performance data. (Counts as supervised machine learning.)
* Unsupervised machine learning from performance data.

Discussion: For what purpose can it be helpful to have a quantitative
requirements model? In what ways might we use it in practice?

23



Quantitative requirements modelling

Table 2: 2-parameter models for the execution time of the ms2 application. 85 o =T ! 30 =T 40
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S. Shudler et al., in Proc. ESPT-VPA 2017&18, doi:10.1007/978-3-030-17872-7_8, 2019.
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Load balancing

Requirements modelling can be used to predict how the way in which the
domain is decomposed, for a given input case/scenario, influences the load of
each of the parallel processes.

Usually, no quantitatively accurate requirements model exists. Even then, a
rough approximation can be used as guidance for distributing the load.

Example scheme: Recursive bisection
(with “k-dimensional tree,” k = 3).

From the top (whole domain) down to
the bottom (single process), split the
volume recursively into parts such that

processes will receive a similar load.

Alternate between spatial dimensions.

25
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Dynamic load balancing

Observations:

1) Performance models are not completely accurate. Moreover, they will
usually neglect some of the parameters that influence the runtime.

2) The actual resource requirements will not always be the same for given
parameter values. There can be a non-negligible statistical uncertainty.

3) Load can change over runtime, e.g., from a changing density profile.

4) Anything can occur on a node in the background, or at the hardware
level (poor cooling, needs to be clocked down, etc.). This cannot be
reflected in the performance model, and it can change at runtime.

Execution times on HPC infrastructures are of the order of hours to days. The

value of the consumed resources is substantial.

Therefore, it can be worth the effort to readjust the decomposition dynamically.

INF205 22" April 2024 26
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Dynamic load balancing algorithms

recursive bisection diffusive multisection' 2
?
——-
?
4—
Reconstruct decomposition, Gradual (“diffusive”) changes
e.g., every 10000 stepsin a can be implemented to adjust to
molecular dynamics simulation. configuration and performance.

'S. Seckler, J. Computat. Sci. 50: 101296, doi:10.1016/j.jocs.2020.101296, 2021.
2J. Sabli¢, E-CAM project deliverable 4.6, 2020.
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