
INF205 4th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

1 C++ basics

1.1 Why C++ 1.4 Design by contract
1.2 From Python to C++ 1.5 Formal design
1.3 Static arrays 1.6 Features of C++

24th February 2025INF205

INF205 learning outcomes

After completing the course you will be able to

– implement solutions in modern C++;
– manage memory safely;
– make use of capabilities provided by the C++ Standard Library and

third-party libraries;
– implement data types from “first principles;”
– assess programs and their use in terms of sustainability metrics;
– write code suitable for concurrent processes and embedded systems;
– create interfaces allowing your code to interact with other software.

We speak of “modern C++” because of the long history of C++, e.g., retaining
all of the C programming language. C++ is like several languages in one.

Focus: Develop solutions that work both reliably and efficiently.

34th February 2025INF205

Structure of the course

1) C++ basics (week 6)
● Getting started – the lecture today
● Procedural programming in C++ (not much different from Python)

2) Memory and objects (week 7)
● Direct access to memory addresses, allocating and deallocating memory
● Object oriented programming in C++ (somewhat different from Python)

3) Data structures and libaries (weeks 8 and 9)
● Containers (incl. lists, graphs), standard template library, other libraries
● Memory management for container data structures

4) Concurrency (week 10 to 11)
● Concurrent process models and paradigms of parallel programming
● Using the ROS2 robot operating system from within C++

INF205 4th February 2025

Digitalisering på Ås

Institutt for datavitskap

1 C++ basics

1.1 Why C++
1.2 From Python to C++
1.3 Static arrays

54th February 2025INF205

C++ vs. Python: Language features

C++ Python

“What do you know about language features
that are different in C++ and Python?”

6

Resource efficient computing: Why?

Embedded systems

Digitalization entails pervasive
computing, including at nodes or
components without a great amount
of computational resources.

P. J. Denning, T. G. Lewis, doi:10.1145/2976758, 2017.

Moore’s law

“What comes after
Moore’s law?”

C. E. Leiserson et al.,
doi:10.1126/science.aam9744, 2020.

therein, see Tab. 1

INF205 4th February 2025

Digitalisering på Ås

Institutt for datavitskap

1 C++ basics

1.1 Why C++
1.2 From Python to C++
1.3 Static arrays

8

Comparison between two simple codes

#include <iostream>

bool is_prime(int n)
{

if(i < 2) return false;
for(int i = 2; n >= i*i; i++)

if((n % i) == 0) return false;
return true;

}

int main()
{

int x = 900;
if(is_prime(x))

std::cout << x << " is prime.\n";
else std::cout << x << " is not prime.\n";

}

def is_prime(n):
 if < 2:
 return False
 for i in range(2, 1 + int(n**0.5)):
 if n%i == 0:
 return False
 return True

x = 900
if is_prime(x):
 print(x, "is prime.")
else:
 print(x, "is not prime.")

C++ code Python code

Example file: is-prime-900.cpp

9

C/C++ as a compiled language

Compile the code from the previous example (file name: isprime-900.cpp),
using the GNU C++ compiler: g++ isprime-900.cpp -o isprime-900

Alternatively, in a Linux environment, we have GNU make: make isprime-900

Normally, codes comprise multiple code files. They are compiled separately
(creating object files), and then linked. Only after linking there is an executable
file. With the GNU C++ compiler, g++ is called both as compiler and linker:

g++ -c only-is-prime.cpp

g++ -c only-main.cpp

g++ -o isprime-900 *.o

only-is-prime.cpp

only-main.cpp

isprime-900

compiler

compiler

only-is-prime.o

only-main.o

linker

Example file: is-prime-separate-files.zip

10

Split into header files (*.h) and code files (*.cpp)

Example file: is-prime-three-files.zip

Before, we split the code into two
code files, one for each function.

How does main know is_prime at
compile time? The declaration

bool is_prime(int n);

must be split from the definition:

bool is_prime(int n) { … }

Such declarations are normally
stored in header files with the
ending “.h”. In this way, the header
can be included by all external code
that requires the same declarations.

#include <iostream>

bool is_prime(int n)
{

if(i < 2) return false;
for(int i = 2; n >= i*i; i++)

if((n % i) == 0) return false;
return true;

}

int main()
{

int x = 900;
if(is_prime(x))

std::cout << x << " is prime.\n";
else std::cout << x << " is not prime.\n";

}

11

What differences can we see?

What differences between the
languages can we recognize
from the introductory example?

#include <iostream>

bool is_prime(int n)
{

if(i < 2) return false;
for(int i = 2; n >= i*i; i++)

if((n % i) == 0) return false;
return true;

}

int main()
{

int x = 900;
if(is_prime(x))

std::cout << x << " is prime.\n";
else std::cout << x << " is not prime.\n";

}

def is_prime(n):
 if < 2:
 return False
 for i in range(2, 1 + int(n**0.5)):
 if n%i == 0:
 return False
 return True

x = 900
if is_prime(x):
 print(x, "is prime.")
else:
 print(x, "is not prime.")

C++ code Python code

12

C/C++ is a statically typed language

Most compiled programming languages are statically typed languages: The
data type of each variable must be known to the compiler, at compile time.

Therefore, the type of a variable must be given when the variable is declared.

float, double
– single-precision and double-precision floating-point numbers

int
– the default signed integer type

short (int), long (int), long long (int)
– less/more memory and smaller/larger range of values

unsigned, unsigned short (int), unsigned long (int), …
– holds natural number (or zero); modulo-arithmetic applies: –n = 2k – n

bool
– integer-like; meant to hold the value false (0) or true (1, or any value ≠ 0)

char, wchar_t
– integer-like; meant to hold a ASCII (char) or Unicode (wchar_t) character

13

Functions require argument types and a return type

// declaration:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, …);

// definition:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, …)
{
 …
 return return_value; // must be of type ret_type
}

Multiple versions of a function (named equally) with different argument types:

// takes an integer argument
//
void do_something(int n) { … }

// takes a floating-point argument
//
void do_something(double x) { … }

Function overloading:

INF205 4th February 2025

Digitalisering på Ås

Institutt for datavitskap

1 C++ basics

1.1 Why C++
1.2 From Python to C++
1.3 Static arrays

15

Dynamic arrays (such as lists in Python)

An array is a sequence of data items of the same type that is contiguous in
memory. Python lists are contiguous in memory, i.e., they are arrays. They can
also grow or shrink in size over time: Python lists are dynamic arrays.

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future. When the capacity of the dynamic array is
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12

x[0] x[1] x[2] x[3]

4

x.length

x = [34, 1, 7, 12]

Note: More memory is allocated than strictly necessary.
Like before, the elements are contiguously arranged in memory.

logical
size is 4

free free

capacity is 6

16

Static arrays

Arrays in C/C++ are static: When declaring the array, the array size is specified
and the exact amount of memory required for these data items is allocated.
The array size does not change over time.

How do we declare a array?
– Give the size as constant expression in square brackets; e.g., int values[6];

How do we initialize an array?
– Explicitly give all the values: int values[] = {4, 2, 3, -7, 2, 3};
– Initialize to all zeroes, indicating the array size: int values[6] = { };

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

Accessing elements of an array is highly efficient: When x[i] is accessed, the
compiler transforms this into accessing the memory address x + sizeof(int) * i.

174th February 2025INF205

C strings: Character arrays

In C++, there is an explicit std:string datatype. But since C++ is backwards
compatible to C, there is also the more traditional string type: The char array.

Also to ensure backwards compatibility with C, string literals between double
quotation marks such as "INF205" are of the type const char* (not std::string).
Between single quotation marks there is always a char, such as char x = 'a';

'I' 'N' 'F' '2' '0' '5' '\0'

string s = "INF205"; or char s[] = "INF205"; produce the following in memory:

73 78 70 50 48 53 0

Note that while the string length above is six, one more is allocated in
memory. The array has seven elements: It ends with the null character '\0'.

INF205 4th February 2025

Digitalisering på Ås

Institutt for datavitskap

Conclusion and
discussion: How to get
started? And how does the
INF205 course work?

194th February 2025INF205

IDE example: Eclipse

https://www.eclipse.org/downloads/packages/release/2024-12/r/eclipse-ide-cc-developers

https://www.eclipse.org/downloads/packages/release/2024-12/r/eclipse-ide-cc-developers
https://www.eclipse.org/downloads/packages/release/2024-12/r/eclipse-ide-cc-developers

204th February 2025INF205

GNU make

(from GNU make documentation)

https://www.gnu.org/software/make/manual/make.html#Rule-Introduction
https://www.gnu.org/software/make/manual/make.html#Rule-Introduction

INF205 4th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

1 C++ basics

1.1 Why C++ 1.4 Design by contract
1.2 From Python to C++ 1.5 Formal design
1.3 Static arrays 1.6 Features of C++

