Norges miljg- og

e
biovitenskapelige
M

universitet
N
INF205
Resource-efficient programming
1 C++ basics
1.1 Why C++ 1.4 Design by contract
1.2 From Python to C++ 1.5 Formal design
1.3 Static arrays 1.6 Features of C++

INF205 4™ February 2025

r' I Norwegian University
- of Life Sciences

INF205 learning outcomes

After completing the course you will be able to

— implement solutions in modern C++;

— manage memory safely;

— make use of capabilities provided by the C++ Standard Library and
third-party libraries;

— implement data types from “first principles;”

— assess programs and their use in terms of sustainability metrics;

— write code suitable for concurrent processes and embedded systems;

— create interfaces allowing your code to interact with other software.

We speak of “modern C++" because of the long history of C++, e.g., retaining
all of the C programming language. C++ is like several languages in one.

Focus: Develop solutions that work both reliably and efficiently.

INF205 4™ February 2025 2

r' I Norwegian University
- of Life Sciences

Structure of the course

1) C++ basics (week 6)
* Getting started - the lecture today
* Procedural programming in C++ (not much different from Python)

2) Memory and objects (week 7)
* Direct access to memory addresses, allocating and deallocating memory
* Object oriented programming in C++ (somewhat different from Python)

3) Data structures and libaries (weeks 8 and 9)
* Containers (incl. lists, graphs), standard template library, other libraries
* Memory management for container data structures

4) Concurrency (week 10to 11)
* Concurrent process models and paradigms of parallel programming
* Using the ROS2 robot operating system from within C++

INF205 4™ February 2025 3

Noregs miljg- og

U
M BI I biovitskaplege

universitet

1 C++ basics

1.1 Why C++
1.2 From Python to C++
1.3 Static arrays

INF205 4™ February 2025

C++ vs. Python: Language features

C++ Python

“What do you know about language features
that are different in C++ and Python?”

INF205 4™ February 2025

Resource efficient computing: Why?

"What comes after

Figure 1. Moore’s original prediction graph Figure 2. Speeds of the fastest computers from 1940 show an exponential rise in speed. M I I ?II
showed component count followed a From 1965 to 2015, the growth was a factor of 12 orders of 10 over 50 years, or a doubling o o re S a W

straight line when plotted on log paper.”® approximately every 1.3 years.

The Top

2 107} MOOI’e'S Iaw @+ FLOPS e OPS

144 < o 01010011 01100011

7 1054+
120 % I o 01101001 01100101 %5
i ; I

01101110 01100011
01100101 00000000 A

o Software Algorlthms Hardware archltecture

Suﬂware performance New algonthms Hardware streamllnmg
engmeenng

C—RUAOONDO
Peak Speed (Rmax)
o =B

Q2 9

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

_________________ awil Removing saﬂware blaat New problem domains Processor simplification

ez 4.‘.“.,[u.n,,: s e cgested ol Tailoring software to New machine models Domain specialization
i ok Saleb i el v esespanent

st eanalated v tlme. 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 hardware features
Year

P.J. Denning, T. G. Lewis, doi:10.1145/2976758, 2017.

for example, semlconductor technology

E m b e d d e d Sy5te ms Performance gains after Moore’s law ends. In the post-Moore era, improvements in computing power wil

increasingly come from technologies at the “Top™ of the computing stack, not from those at the “Bottom’,
reversing the historical trend.

Digitalization entails pervasive - C.E.Leisersonetal,
Computing, including at nodes or doi:10.1126/science.aam9744, 2020.
components without a great amount

Of com utational resources. .
P therein, see Tab. 1

Noregs milj@- og

U
M B I biovitskaplege

universitet

1 C++ basics

1.1 Why C++
1.2 From Python to C++
1.3 Static arrays

INF205 4™ February 2025

Comparison between two simple codes

C++ code Python code
#include <iostream> defis_prime(n):
if < 2:
bool is_prime(int n) return False
{ foriinrange(2, 1 + int(n**0.5)):
if(i < 2) return false; if n%i == 0:
for(inti=2; n >=i*i; i++) return False
if((n % i) == 0) return false; return True
return true;
} x =900
if is_prime(x):
int main() print(x, "is prime.")
{ else:
int x = 900; print(x, "is not prime.")
if(is_prime(x))
std::cout << x << " is prime.\n";
else std::cout << x << "is not prime.\n";
}

Example file: is-prime-9200.cpp

C/C++ as a compiled language

Compile the code from the previous example (file name: isprime-900.cpp),
using the GNU C++ compiler: g++ isprime-9200.cpp -o isprime-9200

Alternatively, in a Linux environment, we have GNU make: make isprime-200

Normally, codes comprise multiple code files. They are compiled separately
(creating object files), and then linked. Only after linking there is an executable
file. With the GNU C++ compiler, g++ is called both as compiler and linker:

only-is-prime.cpp

linker

compiler | g++ -c only-is-prime.cpp — only-is-prime.o —»| g++ -0 isprime-900 *.o

compiler | g++ -c only-main.cpp —— only-main.o isprime-900

!

only-main.cpp

Example file: is-prime-separate-files.zip 9

Split into header files (*.h) and code files (*.cpp)

#include <iostream>

bool is_prime(int n)

{
if(i < 2) return false;
for(inti=2; n >=i*i; i++)
if((n % i) == 0) return false;
return true;
}
int main()
{
intx = 900;
if(is_prime(x))
std::cout << x << " is prime.\n";
else std::cout << x << "is not prime.\n";
}

Before, we split the code into two
code files, one for each function.

How does main know is_prime at

compile time? The declaration
bool is_prime(int n);

must be split from the definition:

bool is_prime(intn){ ... }

Such declarations are normally
stored in header files with the
ending “.h". In this way, the header
can be included by all external code
that requires the same declarations.

Example file: is-prime-three-files.zip 10

What differences can we see?

C++ code Python code
#include <iostream> defis_prime(n):
if < 2:
bool is_prime(int n) return False
{ foriinrange(2, 1 + int(n**0.5)):
if(i < 2) return false; if n%i == 0:
for(inti=2; n >=i*i; i++) return False
if((n % i) == 0) return false; return True
return true;
} x =900
if is_prime(x):
int main() print(x, "is prime.")
{ else:
int x = 900; print(x, "is not prime.")
if(is_prime(x))
std::cout << x << " is prime.\n"; What differences between the
else std::cout << x << " is not prime.\n"; languages can we recognize
} from the introductory example?

11

C/C++ is a statically typed language

Most compiled programming languages are statically typed languages: The
data type of each variable must be known to the compiler, at compile time.

Therefore, the type of a variable must be given when the variable is declared.

float, double
— single-precision and double-precision floating-point numbers

int
— the default signed integer type

short (int), long (int), long long (int)
— less/more memory and smaller/larger range of values

unsigned, unsigned short (int), unsigned long (int), ...
— holds natural number (or zero); modulo-arithmetic applies: -n = 2k-n

bool
— integer-like; meant to hold the value false (0) or true (1, or any value # 0)

char, wchar_t
— integer-like; meant to hold a ASCII (char) or Unicode (wchar_t) character 12

Functions require argument types and a return type

// declaration:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, ...);

// definition:
ret_type function_name(argtype_a argname_a, argtype_b argname_b, ...)

{

return return_value; // must be of type ret_type

}

Function overloading:

Multiple versions of a function (named equally) with different argument types:

// takes an integer argument // takes a floating-point argument
// //
void do_something(int n){ ... } void do_something(double x){ ... }

13

Noregs milj@- og

U
M B I biovitskaplege

universitet

1 C++ basics

1.1 Why C++
1.2 From Python to C++
1.3 Static arrays

INF205 4™ February 2025

Dynamic arrays (such as lists in Python)

An array is a sequence of data items of the same type that is contiguous in
memory. Python lists are contiguous in memory, i.e., they are arrays. They can
also grow or shrink in size over time: Python lists are dynamic arrays.

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future. When the capacity of the dynamic array is
exhausted, all of its contents need to be shifted to another position in memory.

x(0] (1] x[2] x[3] capacity is 6

34 1 7 12 free | free x=[34,1,7,12]

x.length Note: More memory is allocated than strictly necessary.
Like before, the elements are contiguously arranged in memory.

4

logical
sizeis 4 15

Static arrays

Arrays in C/C++ are static: When declaring the array, the array size is specified
and the exact amount of memory required for these data items is allocated.
The array size does not change over time.

x[0] 11 x[2] x[3] x[4] x[3] xl6] x[7]

34 1 / 12 3 4 / 12

Accessing elements of an array is highly efficient: When x[i] is accessed, the
compiler transforms this into accessing the memory address x + sizeof(int) * i.

How do we declare a array?
— Give the size as constant expression in square brackets; e.g., int values[6];

How do we initialize an array?
— Explicitly give all the values: int values[] =1{4, 2, 3, -7, 2, 3};
— Initialize to all zeroes, indicating the array size: int values[6] ={ };

r' I Norwegian University
- of Life Sciences

C strings: Character arrays

In C++, there is an explicit std:string datatype. But since C++ is backwards
compatible to C, there is also the more traditional string type: The char array.

string s = "INF205"; or char s[] = "INF205"; produce the following in memory:

I|I INI IFI I2I IOI I5I I\OI

73 78 70 50 48 53 0

Note that while the string length above is six, one more is allocated in
memory. The array has seven elements: It ends with the null character \0'.

Also to ensure backwards compatibility with C, string literals between double
quotation marks such as "INF205" are of the type const char* (not std::string).
Between single quotation marks there is always a char, such as char x = 'a’;

INF205 4™ February 2025 17

Noregs milj@- og

U
M BI I biovitskaplege

universitet

Conclusion and

discussion: How to get
started? And how does the
INF205 course work?

INF205 4™ February 2025

IDE example: Eclipse

File Edit Source Refactor

w & js-prime-eclipse (in eclipse)

» %5 Binaries

P &= build
w B is-prime-eclipse.cpp
iostream
only-is-prime.h
@® main() : int
w B only-is-prime.cpp
only-is-prime.h
® is_prime(int) : bool
w [only-is-prime.h
#+ ONLY_IS_PRIME_H
is_prime(int) : bool
| AUELGHIE

eclipse-workspace - is-prime-eclipse/is-prime-eclipse.cpp - Eclipse IDE

Navigate Search Project

@ is-prime-eclipse

907 is prime.

Run

Window

£ on:

Help

2 Local

— U
M

N —

iostream
only-is-prime.h

@ main() : int

Norwegian University
of Life Sciences

https://www.eclipse.org/downloads/packages/release/2024-12/r/eclipse-ide-cc-developers

INF205

4™ February 2025

19

https://www.eclipse.org/downloads/packages/release/2024-12/r/eclipse-ide-cc-developers
https://www.eclipse.org/downloads/packages/release/2024-12/r/eclipse-ide-cc-developers

r' I Norwegian University
- of Life Sciences

GNU make N

2.2 A Simple Makefile

Here is a straightforward makefile that describes the way an executable file called edit depends
on eight object files which, in turn, depend on eight C source and three header files.

In this example, all the C files include defs.h, but only those defining editing commands include
command . h, and only low level files that change the editor buffer include buffer.h.

edit : main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o
cc -0 edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

main.o : main.c defs.h
cc -c main.c
kbd.o : kbd.c defs.h command.h
cc -c kbd.c
command.o : command.c defs.h command.h
cc -c command.c
display.o : display.c defs.h buffer.h
cc -c display.c
insert.o : insert.c defs.h buffer.h
cc -c insert.c
search.o : search.c defs.h buffer.h
cc -c search.c
files.o : files.c defs.h buffer.h command.h
cc -c files.c
utils.o : utils.c defs.h
cc -c utils.c
clean :
rm edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

(from GNU make documentation)

INF205 4™ February 2025 20

https://www.gnu.org/software/make/manual/make.html#Rule-Introduction
https://www.gnu.org/software/make/manual/make.html#Rule-Introduction

Norges miljg- og

e
biovitenskapelige
M

universitet
N
INF205
Resource-efficient programming
1 C++ basics
1.1 Why C++ 1.4 Design by contract
1.2 From Python to C++ 1.5 Formal design
1.3 Static arrays 1.6 Features of C++

INF205 4™ February 2025

