
INF205 7th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

1 C++ basics

1.1 Why C++ 1.4 Design by contract
1.2 From Python to C++ 1.5 Formal analysis
1.3 Static arrays 1.6 Stack frames

27th February 2025INF205

Static arrays

Arrays in C/C++ are static: When declaring the array, the array size is specified
and the exact amount of memory required for these data items is allocated.
The array size does not change over time.

How do we declare a array?
– Give the size as constant expression in square brackets; e.g., int values[6];

How do we initialize an array?
– Explicitly give all the values: int values[] = {4, 2, 3, -7, 2, 3};
– Initialize to all zeroes, indicating the array size: int values[6] = { };

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

Accessing elements of an array is highly efficient: When x[i] is accessed, the
compiler transforms this into accessing the memory address x + sizeof(int) * i.

37th February 2025INF205

C strings: Character arrays

In C++, there is an explicit std:string datatype. But since C++ is backwards
compatible to C, there is also the more traditional string type: The char array.

Also to ensure backwards compatibility with C, string literals between double
quotation marks such as "INF205" are of the type const char* (not std::string).
Between single quotation marks there is always a char, such as char x = 'a';

'I' 'N' 'F' '2' '0' '5' '\0'

string s = "INF205"; or char s[] = "INF205"; produce the following in memory:

73 78 70 50 48 53 0

Note that while the string length above is six, one more is allocated in
memory. The array has seven elements: It ends with the null character '\0'.

4

C/C++ arrays are pointers

An array contains a sequence of elements of the same type, arranged
contiguously in memory. This supports fast access using pointer arithmetics.
Once created, the size of a C/C++ array is fixed; we cannot append elements.

In C/C++, the type of an array such as int[] is the same as the corresponding
pointer type int*, i.e., the array actually is a pointer. Its value is an address at
which an integer is stored, namely, the memory address of the first element.

When x[i] is accessed, the compiler transforms this into x + sizeof(int) * i.

– Allocation is done with new. Example: int* i = new int[8]();
– Deallocation is done with delete[]. Example: delete[] i;

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &(x[0]) x + 3 = &(x[3]) x + 6 = &(x[6])

See example create-simple-segfault.cpp

57th February 2025INF205

What is a pointer?

Compare:

– An int is a variable that contains an integer number, such as 7.
– A std::string is a variable that contains a string, such as "INF205".

– A pointer to X, of type X*, is a variable that contains a memory address,
such as 0x7ffeaea5174c. It is meant for an address of a value of type X.

– It is good practice to set pointers to nullptr (“null pointer”) whenever it
is impossible to assign them a valid memory address.

– We can allocate memory for an X object by hand, with X* pt = new X.
– We can deallocate (release) the memory again by hand, with delete pt.

A pointer is a variable that has a memory address as its value.

– double* b is a pointer to an address for storing a double value.
– The address of an object is obtained by referencing, e.g., pt = &var;
– While pt is the address, we can dereference it (*pt) to access the content.

See example create-simple-segfault.cpp

6

Operators for referencing (&) and dereferencing (*)

Referencing operator &:

– Used to obtain the address of a variable: &x is the address of x.
– If x has type X, the address has the type X*, i.e., “pointer to X.”

int x = 5; int* y = &x;

Dereferencing operator *:

– If y is a pointer of type X* (pointer to X), the value of y is an address.
– To access the value stored at the address y, we dereference it as *y.
– The value stored at y, and accessed by *y, is then of type X.
– & and * are inverse operators, therefore, *(&x) is the same as x:

int x = 5; int* y = &x; cout << x << “ is the same as “ << *y;

INF205 7th February 2025

Digitalisering på Ås

Institutt for datavitskap

1 C++ basics

1.4 Design by contract
1.5 Formal program analysis
1.6 On procedural programming

8

Programming paradigms

Imperative programming
– It is stated, instruction by instruction, what

the processor should do
– Control flow implemented by jumps (goto)

Structured programming
– Same, but with higher-level control flow
– Contains “instruction by instruction” code

Procedural programming
– Functions (procedures) as highest-level

structural unit of code
– Still contains loops, etc., for control flow

within a function

Object-oriented programming
– Classes as highest-level structural unit of

code; objects instantiate classes
– Still contains functions, e.g., as methods

Functional programming
(also: “declarative programming”)

Logic programming

Constraint programming

Programming paradigms based
on describing the solution

rather than computational steps:

9

Design by contract

• Specify
– Function specification – what it should do
– Non-functional specification – how well it should do it

• Design
– Select appropriate algorithms and data structures

• Consider effectiveness/correctness – does it do
what it is supposed to?

• Consider efficiency
– Size
– Speed

• Implement
– Create solution at low level

• Evaluate
– Debug, assess for syntactic & semantic correctness
– Check performance (i.e., resource requirements)

“contracts” between specifying
and implementing person

(these often are the same person)

10

Preconditions and postconditions

Note

Consider the statement “a” from transition S1 → S3:

– Execution state S1 fulfils the precondition of statement a.

– Execution state S3 fulfils the postcondition of statement a.

Precondition: State of the program at a
point directly before the considered unit.
This may include assumptions taken
from the design contract or specification.

Postcondition: State of the program at a
point directly after the considered unit,
assuming that the precondition was
fulfilled at the point directly before it.

if (condition c)

{ a; } else { b; }

initial state S0

true false
S1 S2

final state S3 final state S4

INF205 7th February 2025

Digitalisering på Ås

Institutt for datavitskap

1 C++ basics

1.4 Design by contract
1.5 Formal program analysis
1.6 On procedural programming

12

Program flow graphs

1F. Nielson, H. Riis Nielson, C. Hankin,
Principles of Program Analysis,
Heidelberg: Springer, 2005.

Formal analysis goes the opposite way, constructing conditions for states.

13

Program flow graphs: Formal analysis

For purposes of formal analysis, the program flow is analysed step by step, e.g.,
at the instruction (statement) level, at the level of blocks of code that form a
coherent unit, or at the level of functions or methods.

Precondition: State of the program at a point directly before the considered unit.
This may include assumptions taken from the design contract or specification.

Postcondition: State of the program at a point directly after the considered unit,
assuming that the precondition was fulfilled at the point directly before it.

Example

As part of a development project, we need a function grtfrac(x, y)
that takes two floating-point arguments and returns the one with
the greater fractional part; e.g., grtfrac(2.7, 3.6) is to return 2.7,
because “.7” is greater than “.6”. In design by contract, the caller,
not the called method needs to guarantee the precondition.

14

Program flow graphs: Formal analysis

float grtfrac(float x, float y)
{
 if((x - floor(x)) > (y - floor(y)))
 return x;
 else
 return y;
}

if((x - floor(x)) > (y - floor(y)))

return x return y

initial state S0

true false
S1 S2

final state S3
final state S4

transitions S0 → S1, S2

transition S2 → S4transition S1 → S3

S0: x and y are floating-point numbers (by specification).
S1: x, y as above; the fractional part of x is greater than that of y.
S2: x, y as above; the fractional part of y is greater than that of x, or equal.
S3: The fractional part of x is the greater one, and x was returned.
S4: The fractional part of y is greater (or they are equal); y was returned.

INF205 7th February 2025

Digitalisering på Ås

Institutt for datavitskap

1 C++ basics

1.4 Design by contract
1.5 Formal program analysis
1.6 On procedural programming

167th February 2025INF205

Functions / procedural programming

• Functions are named

• Each function has a distinct task

• It may have its own variables

• It may call another function, including calls to itself (recursion),

• It may return a value; it must have a return type (which may be void)

• It may accept arguments

• Function parameters are the variables listed in the function’s definition.
Function arguments are the values passed to the function, which are
assigned to the function’s parameters at runtime.

In many procedural programming languages, including C/C++ and Python,
code blocks that can be called from other blocks are called functions. However,
do not confuse procedural programming (as a programming paradigm) with
functional programming, a name given to a very different approach (LISP, etc.).

17

Memory on the stack vs. memory on the heap

Allocation: Reserve memory to store data.
Deallocation: Release the memory.

On the stack

The stack is already handled completely and safely by the compiler. Memory
on the stack (local variables of functions) is allocated as part of a stack frame
when the function is called. It is deallocated again when the function returns.

On the heap

Memory on the heap is managed independent of the stack, at runtime,
subject to explicit allocation and deallocation instructions that must come
from the programmer. There is no garbage collection in C++!

– Allocation is done with new. Example: int* i = new int(42);
– Deallocation is done with delete. Example: delete i;

initialization to *i = 42

18

Functions and their stack frames

Stack-like memory management

When a function is called, a known amount
of memory must be allocated for its variables
(including parameters) “on top of the stack.”

When the function returns, its memory can
be released; the calling method and its
variables become the top of the stack again.

The lifetime of local variables in a stack
frame is limited to the function’s runtime.

int select(int a, int b)
{
 if(a%2 == 0) return a;
 else return b;
}

int user_input()
{
 int y = 0, z = 0;
 std::cin >> y >> z;
 return select(y, z);
}

int main()
{
 int x = user_input();
}main int x retv (int)

>> select retv (int)int a
int b...

retv (int)user_input int y int z

Example file: three-functions.cpp; compile with “g++ -g3 -o …” and run using gdb.

19

Observations: Stack

Backtrace and stack inspection using gdb

– Compile with “-g” or “-g3” option
– gdb three-functions

• break three-functions.cpp:6
• run

• bt [“backtrace”]

int select(int a, int b)
{
 if(a%2 == 0) return a;
 else return b;
}

int user_input()
{
 int y = 0, z = 0;
 std::cin >> y >> z;
 return select(y, z);
}

int main()
{
 int x = user_input();
}main int x retv (int)

select retv (int)int a
int b

retv (int)user_input int y int z

#0 select (a=4, b=3) at three-functions.cpp:6
#1 [...] user_input () at three-functions.cpp:14
#2 [...] main () at three-functions.cpp:19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Breakpoint 1, select (a=4, b=3) at three-functions.cpp:6
6 if(a%2 == 0) return a;

stack
frame 0

stack
frame 1

stack frame 2

20

Overloading and namespaces

Function overloading (identical name within the same namespace, if any) and
the use of multiple namespaces are technically different mechanisms.
However, they become similar if equal names occur in multiple namespaces.

namespace task_a
{
 void run(double x, double y);
}
namespace
{
 void run(int x, int y);
}

namespace task_b
{
 void run(int x, int y);
 void run(double x, double y);
}

int main()
{
 using namespace task_a;
 run(1.0, 1.0);
}

int main()
{
 using namespace task_b;
 run(1.0, 1.0);
}

namespace task_c
{
 void run(double x, double y);
}
namespace
{
 void run(double x, double y);
}

int main()
{
 run(1.0, 1.0);
 task_c::run(1.0, 1.0);
}

In what case are we strictly overloading “run” (within a single namespace)?
In each of the cases, which version of “run” will be executed?

Example file: namespaces-overloading.zip

21

C++ Core Guidelines

• In: Introduction
• P: Philosophy
• I: Interfaces
• F: Functions
• C: Classes and class

hierarchies
• Enum: Enumerations
• R: Resource management
• ES: Expressions and

statements

• Per: Performance
• CP: Concurrency and

parallelism
• E: Error handling
• Con: Constants and immutability
• T: Templates and generic

programming
• CPL: C-style programming
• SF: Source files
• SL: The Standard Library

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

227th February 2025INF205

Selected guidelines on namespaces

(This makes it easy to distinguish “helper” code from that needed outside.)

SF.20: Use namespaces to express logical structure

Use of the “unnamed namespace” construction: namespace{ … }

– SF.21: Don’t use an unnamed namespace in a header
– SF.22: Use an unnamed namespace for all internal/non-exported entities

void do_task_a(int x);
void do_task_b(int x);
void do_task_c(int x);
…

namespace
{
 int transform(int x) { … }
}

void do_task_a(int x)
{
 int y = transform(x);
 …
}

header file, *.h

code file, *.cpp
was declared in the header

237th February 2025INF205

Selected guidelines on functions

Core Guidelines on functions:
– F.1: “Package” meaningful operations as carefully named functions
– F.2: A function should perform a single logical operation
– F.3: Keep functions short and simple

…
– F.46: int is the return type for main()

More traditional style uses assert(…).

int area(int height, int width)
{
 Expects(height > 0);
 int retv = height*width;
 Ensures(retv > 0);
 return retv;
}

example based on Grimm, 2022, p.443:

I.6: Prefer Expects() for expressing preconditions
I.7: State postconditions [with Ensures()]

Example files: conditions-gsl.cpp (modern) and conditions-assert.cpp (traditional).

247th February 2025INF205

Selected guidelines: Signed/unsigned

Core Guidelines style rules against “unsigned” (same as unsigned int).
These rules use elements taken from the Guidelines Support Library (GSL).

ES.102: Use signed types for arithmetic

ES.106: Don't try to avoid negative values by using “unsigned”

ES.107: Don't use unsigned for subscripts [e.g., array indices], prefer gsl::index

The reasoning against a normal (signed)
integer is that “int might not be big enough.”

Then rather use long (instead of
unsigned int) …

Remember the pitfall: For arithmetics over unsigned integer variables, the
result of the subtraction “2 – 3” is the value 4 294 967 295.

INF205 7th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

1 C++ basics

1.1 Why C++ 1.4 Design by contract
1.2 From Python to C++ 1.5 Formal analysis
1.3 Static arrays 1.6 Stack frames

