
INF205 11th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

2 Memory and objects

2.1 Pass by value/reference 2.4 Immutability
2.2 Memory allocation 2.5 Streams and file I/O
2.3 C++ object orientation 2.6 Class hierarchies

211th February 2025INF205

Referencing (&) and dereferencing (*)

Referencing operator &:

– Used to obtain the address of a variable: &x is the address of x.
– If x has type X, the address has the type X*, i.e., “pointer to X.”

int x = 5; int* y = &x;

Dereferencing operator *:

– If y is a pointer of type X* (pointer to X), the value of y is an address.
– To access the value stored at the address y, we dereference it as *y.
– The value stored at y, and accessed by *y, is then of type X.
– & and * are inverse operators, therefore, *(&x) is the same as x:

int x = 5; int* y = &x; cout << x << “ is the same as “ << *y;

311th February 2025INF205

C/C++ arrays are pointers

An array contains a sequence of elements of the same type, arranged
contiguously in memory. This supports fast access using pointer arithmetics.
Once created, the size of a C/C++ array is fixed; we cannot append elements.

In C/C++, the type of an array such as int[] is the same as the corresponding
pointer type int*, i.e., the array actually is a pointer. Its value is an address at
which an integer is stored, namely, the memory address of the first element.

When x[i] is accessed, the compiler transforms this into x + sizeof(int) * i.

– Allocation is done with new. Example: int* i = new int[8]();
– Deallocation is done with delete[]. Example: delete[] i;

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &(x[0]) x + 3 = &(x[3]) x + 6 = &(x[6])

411th February 2025INF205

Remark: Strings in C and C++

The C++ language only prescribes what functionalities a std::string should
provide, not how it is realized at the memory level, which is up to the compiler.

Most implementations remain close to that from the C language, where
character arrays terminated by the null character '\0' are employed. (If you
want to enforce this, you can also still use all the C style constructs explicitly.)

Also to ensure backwards compatibility with C, string literals between double
quotation marks such as "INF205" are of the type const char* (not std::string).
Between single quotation marks there is always a char, such as char x = 'a';

'I' 'N' 'F' '2' '0' '5' '\0'

string s = "INF205"; or char s[] = "INF205"; produce the following in memory:

73 78 70 50 48 53 0

INF205 11th February 2025

Digitalisering på Ås

Institutt for datavitskap

2 Memory and objects

2.1 Pass by value or reference
2.2 Memory allocation
2.3 OOP in C++

6

Pass by value in C++ (compared to Python)

In Python, object references are passed by value (i.e., “pass by object reference”):

Argument passing by object reference in Python (similarly, in Java)

address
&x

value
x address

&y
value

y

object x

x has changed

&y is &x

y.change()

function call f(x)

object reference “y”
object reference “x”

Argument passing by value

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x is 4

finally, x is still 4

initially, y is 4

y = 5

 &y is unrelated to &x

7

Pass by reference in C++ (compared to pass by value)

Pass by value: A new copy of the argument value(s) is created in memory. The
function works with the copy. The function cannot access the original variable.

Pass by reference: The function is enabled to access the original variable at its
address in memory. No copy is created. Changes affect the original variable.
XXXXX

address
&x

value
x

value
y = &x

variable x

x has changed

y is &x
change *yfunction

call f(&x)

type X* pointer yvariable x of type X
void f(X* y)

8

Pass by reference in C++ (two ways of doing it)

Pass by value: A new copy of the argument value(s) is created in memory. The
function works with the copy. The function cannot access the original variable.

Pass by reference: The function is enabled to access the original variable at its
address in memory. No copy is created. Changes affect the original variable.
C++ has two mechanisms for this: Passing a pointer and passing a reference.*

*Unfortunately there is some terminology confusion about this. We will call both “pass by reference.”

address
&x

value
x

value
y = &x

variable x

x has changed

y is &x
change *yfunction

call f(&x)

type X* pointer yvariable x of type X
void f(X* y)

address
&x

value
x

address
&y = &x

value
y = x

variable x

x has changed

&y is &x
change yfunction

call f(x)

type X& reference yvariable x of type X
void f(X& y)

9

Pass by reference vs. pass by value

Advantages of passing a function argument by value:

– Memory management is done at the stack level, by the compiler. The
programmer can relax and does not need to deal with this aspect.

– The stack can be optimized at compile time, and it is faster to access
memory on the stack because there is no need to look up an address.

– Variable lifetime coincides with the runtime of functions that use them.
– The value of the variable in the calling function is protected from any

intransparent changes by the called function.
– This makes the code more modular. It is easier to understand and even

verify the function. (The point of using local instead of global variables.)

Advantages of passing a function argument by reference:

There must be a reason there is a second mechanism, pass-by-reference.
Why? What is the advantage?

10

Pass by reference using a pointer vs. a reference

Advantages of pass-by-reference using a reference:
– Some memory-related errors become less likely if we only work with

references; e.g., errors from applying incorrect pointer arithmetics.
– Looks more like Java, Python, and other modern high-level languages.

Advantages of pass-by-reference using a pointer:
– It is visible to the programmer at all times that we deal with memory.
– Looks more like C, and it is closer to the object-code representation.

Pointers and references are two equivalent notations for the same techniques.

void some_function(int& parameter) {
 …
 // convert the reference to a pointer
 int* y = ¶meter;
 // now we can work with pointer y
 …
}

void some_function(int* parameter) {
 …
 // convert the pointer to a reference
 int& x = *parameter;
 // now we can work with reference x
 …
}

INF205 11th February 2025

Digitalisering på Ås

Institutt for datavitskap

2 Memory and objects

2.1 Pass by value or reference
2.2 Memory allocation
2.3 OOP in C++

book Section 1.5

12

Allocate: new. Deallocate: delete.

Allocation: Reserve memory to store data.
Deallocation: Release the memory.

On the stack

The stack is already handled completely and safely by the compiler. Memory
on the stack (local variables of functions) is allocated as part of a stack frame
when the function is called. It is deallocated again when the function returns.

On the heap

Memory on the heap is managed independent of the stack, at runtime,
subject to explicit allocation and deallocation instructions that must come
from the programmer. There is no garbage collection in C++!

– Allocation is done with new. Example: int* i = new int;
– Deallocation is done with delete. Example: delete i;

13

Summary: Allocation and deallocation by pointers

How do we declare a pointer?
– Like any other variable. Its type is a pointer type; e.g., int* my_int_pointer;

How do we initialize a pointer?
– Initialize to nullptr (pointer version of 0): int* my_int_pointer = nullptr;
– Initialize to another variable’s address: int* my_int_pointer = &my_index;
– Allocate memory on the heap: int* my_int_pointer = new int(0);

How do we deallocate a variable if it is stored on the heap?
– Delete the pointer to it. Example: b = new BookIndex; …; delete b;

How to release the memory if it is a local variable that is stored on the stack?
– Don’t do that! You can only call “delete” on memory allocated with “new”.

What if we call new, but there is not enough free memory left on the system?
– new VeryBigObject may throw an exception (a high-level construct).
– new(std::nothrow) VeryBigObject may return nullptr (low-level construct).

14

Summary: Allocation and deallocation of arrays

How do we declare a array?
– Give the size as constant expression in square brackets; e.g., int values[6];
– Also possible: Just declare a pointer; e.g., int* values;

How do we initialize an array?
– Explicitly give all the values: int values[] = {4, 2, 3, -7, 2, 3};
– Initialize to all zeroes, indicating the array size: int values[6] = { };
– Allocate memory with default initialization: int* values = new int[6]();

How do we deallocate an array if it is stored on the heap?
– Use delete[]. Example: b = new BookIndex[100](); …; delete[] b;
– Pitfall: If you use delete instead of delete[], only b[0] will be deallocated!

What if we call new, but there is not enough free memory left on the system?
– new BigObject[100000]() may throw an exception.
– new(std::nothrow) BigObject[100000]() may return nullptr.

1511th February 2025INF205

The three most typical memory bugs

1) Access a pointer that was not initialized, or that has the value nullptr, or that
for any other reason points to an invalid address in memory. (“Wild pointer.”)

• Question: Why is this dangerous?

2) Memory is allocated using new, but not deallocated again using delete.
This is called a memory leak.

• Question: Why is this dangerous?

3) Memory has been deallocated: Either it was on the stack in a stack frame
that has been removed, or there has been a delete statement. But the address
information was stored in a pointer that still exists: A dangling pointer!

• Question: Why is this dangerous?

16

Code that can produce wild pointers

#include <iostream>

void crop(int num_strings, char** strings, int characters_cropped);

int main(int argc, char** argv) {
int jump_to_index = 2;
crop(argc-1, argv+1, jump_to_index);

for(int i = 1; i < argc; i++)

std::cout << "Argument no. " << i << " was cropped to \"" << argv[i] << "\".\n";
}

void crop(int num_strings, char** strings, int characters_cropped) {

for(int i = 0; i < num_strings; i++)
 strings[i] += characters_cropped;

}

Example file: wildptr.cpp

1. Where is argv in memory? What does it consist of?

Plan: Remove the first 2 characters
from each command-line argument.

Implementation: Simply jump ahead
by <characters_cropped> char’s,
that is, here, by 2 characters.

17

Code that can produce wild pointers

#include <iostream>

void crop(int num_strings, char** strings, int characters_cropped);

int main(int argc, char** argv) {
int jump_to_index = 2;
crop(argc-1, argv+1, jump_to_index);

for(int i = 1; i < argc; i++)

std::cout << "Argument no. " << i << " was cropped to \"" << argv[i] << "\".\n";
}

void crop(int num_strings, char** strings, int characters_cropped) {

for(int i = 0; i < num_strings; i++)

 strings[i] += characters_cropped;

}

2. What sort of a statement is this? Why do we need it?

3. Why this “-1” and “+1” on argc and argv?

4. How was this supposed to work?
When will it inadvertently generate
a wild pointer?

Example file: wildptr.cpp

18

#include <cassert>
#include <cstring>
#include <iostream>

void crop(int num_strings, char** strings, int characters_cropped);

int main(int argc, char** argv) {
int jump_to_index = 2;
crop(argc-1, argv+1, jump_to_index);

for(int i = 1; i < argc; i++)

std::cout << "Argument no. " << i << " was cropped to \"" << argv[i] << "\".\n";
}

void crop(int num_strings, char** strings, int characters_cropped) {
assert(characters_cropped >= 0);
for(int i = 0; i < num_strings; i++)

if(strlen(strings[i]) >= characters_cropped)
strings[i] += characters_cropped;

else strings[i] += strlen(strings[i]);
}

Example file: wildptr-fixed.cpp

used for assert(condition), which checks that condition is true

used for strlen(char* str), which returns the length of a C string

Note that this is one less than the size of str as a char array:
For strlen, the terminal \0 character does not count.

19

How can memory leaks be fixed?

High-level languages operate with
automated garbage collection:
Memory is deallocated when there
are no more variables referring to it.

C/C++ memory management on the
heap must be done by hand. This
causes two possible bugs:

Memory leak: Memory should have
been deallocated, but was not.

Dangling pointers: Memory has
been deallocated, but it should not.

Discussion:
– What approaches can we try

in general, when we have
detected a memory leak?

– Brainstorm a list of ideas.

–

20

How can memory leaks be avoided?

There are a few techniques in C++ that help us write safer code with explicit
memory management, still done on the heap but less prone to pitfalls.

The key concept for safe manual memory management is ownership of a data
item, i.e., deciding what entity/part of the code has responsibility for managing
its allocation and deallocation safely. The entity holding ownership is typically
an object – so we will first need to discuss how OOP is done in C++.

Discussion:
– What approaches can we try in general, if we want to

decrease the risk of a bug in the form of a memory leak?

INF205 11th February 2025

Digitalisering på Ås

Institutt for datavitskap

2 Memory and objects

2.1 Pass by value or reference
2.2 Memory allocation
2.3 OOP in C++

Core Guidelines:

C.3 – C.11
C.43 – C.51

(and more in “C”)

Sections 5.1, 5.2

22

OOP as a programming paradigm

Imperative programming
– It is stated, instruction by instruction, what

the processor should do
– Control flow implemented by jumps (goto)

Structured programming
– Same, but with higher-level control flow
– Contains “instruction by instruction” code

Procedural programming
– Functions (procedures) as highest-level

structural unit of code
– Still contains loops, etc., for control flow

within a function

Object-oriented programming (OOP)
– Classes as highest-level structural unit of

code; objects instantiate classes
– Still contains functions, e.g., as methods

Functional programming
(also: “declarative programming”)

Constraint programming

Logic programming

Programming paradigms based
on describing the solution

rather than computational steps:

Generic programming
(introduces ideas from declarative

and logical methods into OOP)

23

Class definitions: From Python to C++

«“private” instance variables that cannot
be accessed except from inside an
object don’t exist in Python.

However, there is a convention that is
followed by most Python code: a name
prefixed with an underscore (e.g.
_spam) should be treated as a non-
public part of the API (whether it is a
function, a method or a data member).
It should be considered an
implementation detail and subject to
change without notice.»

Python tutorial, Section 9.6:

Why is it bad practice to do this?
What should we do instead?

Example file: book-index-python.ipynb

https://docs.python.org/3/tutorial/classes.html#private-variables

24

Class definitions: From Python to C++

class BookIndex
{
 int chapter = 1;
 int section = 1;
 int page = 1;

 int next_chapter();

 int next_section();

 int next_page();

 void out() const;
}

int BookIndex::next_chapter() {
 this->chapter++;
 this->section = 1;
 this->page++;
 return this->chapter;
}

int BookIndex::next_section() {
 this->section++;
 return this->section;
}

int BookIndex::next_page() {
 this->page++;
 return this->page;
}

void BookIndex::out() const {
 cout << "Section " << this->chapter
 << "." << this->section
 << ", p. " << this->page << "\n";
}

A method is a function that belongs
to an object. Methods are declared
in the class definition (header file)
and usually defined in the code file.

Example file: book-index.zip

25

Access object members using dot (.) and arrow (->)

class BookIndex
{
 int chapter = 1;
 int section = 1;
 int page = 1;

 int next_chapter();

 int next_section();

 int next_page();

 void out() const;
}

int BookIndex::next_chapter() {
 this->chapter++;
 this->section = 1;
 this->page++;
 return this->chapter;
}

int BookIndex::next_section() {
 this->section++;
 return this->section;
}

int BookIndex::next_page() {
 this->page++;
 return this->page;
}

void BookIndex::out() const {
 cout << "Section " << this->chapter
 << "." << this->section
 << ", p. " << this->page << "\n";
}

The pointer this is analogous to the object reference
“self” from Python. It points to the object itself.

If a method is declared as const, it cannot change
any of the object’s own properties.

Example file: book-index.zip
Properties: Variables of an object;
Methods: Functions of an object.

The properties and methods are
called the members of the object.

Just like in Python, the dot operator
can be used to access a member:

 BookIndex b;
 b.chapter = 1;

Often we deal with pointers to an
object. Then we might write:

 BookIndex* c = &b;
 (*c).chapter = 2;

The arrow operator abbreviates this:

 c->chapter = 2;

26

Private: Cannot be accessed from outside

The private and public status of class members (i.e., properties and methods)
is stated in the class definition, where properties and methods are declared:

class ExampleClass {
public:
 TypeA getPropertyA() const {return this->propertyA;}
 TypeB* getPropertyB() const {return this->propertyB;}
 void setPropertyA(TypeA a) {this->propertyA = a;}
 void setPropertyA(TypeB* b) {this->propertyB = b;}
 void do_something();

private:
 TypeA propertyA;
 TypeB* propertyB;

 void helper_method();
};

Only the public part of
the class definition is the
interface accessible to
code outside the scope of
the class.

Typical object-oriented design makes all properties
(objects’ variables) private. They are read using public
“get” methods and modified using public “set” methods.

Methods that are only called by other methods of the same
class, but not from outside, are also declared to be private.

2711th February 2025INF205

Constructors and destructors

Constructor: A method that is called when an object is allocated.
Destructor: A method that is (implicitly) called when an object is deallocated.

They are not mandatory (as we have seen); use them if you need to specify
some functionality for this purpose. Most typically:

– Provide a constructor if you want to give the user control over how the
private properties of an object are initialized.

– There are also special “copy constructors” and “move constructors”.
(We will discuss them in detail at a later stage in the course.)

– Provide a destructor if your memory management strategy requires it;
there might be properties stored as pointers that need to be deleted.

class BookIndex {
public:
 BookIndex(int c, int s, int p);
 ~BookIndex();
 …
};

BookIndex::BookIndex(int c, int s, int p) {
 this->chapter = c; this->section = s; this->page = p;
}
BookIndex::~BookIndex() {
 cout << "Deleting a BookIndex object.\n";
}

2811th February 2025INF205

Constructors and destructors

General rule: For every “new” there must be a matching “delete”.

class T
{
public:
 …
 ~T() { delete this->p; }
 …
private:
 S* p …
}

The destructor T::~T() is called when
an object of type T is deallocated.

void function_name(…)
{
 // constructor is called
 T tobject;
 …
 // destructor is called
 return;
}

{
 …
 // constructor is called
 T* tpointer = new T;
 …
 // destructor is called
 delete T;
}

This is the case both for objects on the
stack and on the heap:

There might by
other properties
that do not need
to be deallocated
manually. (Why?)

If T has ownership over
p, this must be done!

Without it,
there would be a

memory leak!

2911th February 2025INF205

Constructors and destructors

Core Guidelines:

– C.20: “If you can avoid defining default operations, do.”

• “This is known as “the rule of zero.” Define zero constructors or
destructors if it can be done without creating an inconsistent state.

• A simple and good reason for defining a constructor is to force the
user to provide some information that is required.

• Define a constructor in cases where it does not make sense to
initialize the object’s properties to some specified default value.

– C.30: “Define a destructor if a class needs an explicit action at object

destruction.” And related, C.31: “All resources acquired by a class

must be released by the class’s destructor.”
• If a data structure needs to be built up (memory allocated, etc.),

this normally requires both a constructor and a destructor.
• For such cases, we will learn the rule of three and the rule of five.

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-class
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-class
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-class

INF205 11th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

2 Memory and objects

2.1 Pass by value/reference 2.4 Immutability
2.2 Memory allocation 2.5 Streams and file I/O
2.3 C++ object orientation 2.6 Class hierarchies

