Norges miljg- og

e
biovitenskapelige
M

universitet

INF205
Resource-efficient programming

2 Memory and objects

2.1 Pass byvalue/reference 2.4 Immutability
2.2 Memory allocation 2.5 Streams and file I/O
2.3 C++ object orientation 2.6 Class hierarchies

INF205 14™ February 2025

Common mistakes

r' I Norwegian University
- of Life Sciences

Repetition: We talked about three main kinds of mistakes in manual memory

management. What were they? (1) (2)

Strategies that we had identified for trying to avoid these mistakes:

1) Avoid manual memory management if
possible; use the stack, not the heap.
* Don't work with pointers unless there is
a clear advantage. Don't pass by
reference without a good reason.

2) Assign clear responsibilities for what part
of the code is to allocate each data item
that you create on the heap.

* Create a “container” that “owns” it. If

suitable, library (e.g. STL) containers.

INF205 14™ February 2025

Smart pointers are very
elementary containers. They
have ownership over the
object to which they point.

Instead of T*, where T is the
type, we can use
std::unique_pointer<T> or
std::shared_pointer<T>.

See Core Guidelines |.11.

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-use-ptr

2.4

Noregs milj@- og

universitet

U
M BI I biovitskaplege

Memory and objects

Constants & immutability

2.5
2.6

INF205

Streams and file I/O
Class hierarchies

14" February 2025

Institutt for datavitskap

book Section 1.6

r' I Norwegian University
- of Life Sciences

The keywords auto, const, constexpr

auto: Leave it to the compiler to determine the type

This requires an initialization. for (auto i =0; i < 26; i++)
Remark: { auto c = 'a' should

. - o become int
typeid(x).name() can should / c+=1i;
be used to output the become char cout << ¢;
type assigned to x. }

const: Used to declare an immutable variable

constexpr: Immutable and, additionally, can be evaluated at compile time

constexpr int space_dimension = 3; intn = 0; cin >>n; const int num_coords = n*space_dimension;

Con.1: By default, make objects immutable
“make objects non-const only when there is a need to change their value”

Con.4: Use const to define objects with values that do not change
Con.5: Use constexpr for values that can be computed at compile time

INF205 14™ February 2025 4

“const” parameters of a function

const-array-broken.cpp - does not compile

If we pass an argument by reference but
do not intend to modify it, the parameter
should be declared as const. Such as:

void do_something(const int N);
void do_something(const int* const x);
void do_something(const int x[]);

Const variables may only be passed by
reference if the parameter is also const.

1. What is the code supposed to do?
2. Why does it not compile?

3. What should be changed?

4. What more const/-expr can we add?

INF205

— U
M

N —

Norwegian University
of Life Sciences

int second_of(int N, int* x) {
int largest = x[0];
int second_largest
= std::numeric_limits<int>::min();

for(inti=1;i<N; i++)
if(x[i] > largest) {
second_largest = largest;
largest = x[i];
}
else if(x[i] > second_largest)
second_largest = x[i];
return second_largest;

}

int main() {
int fixed_array_size = 5;
const int x[fixed_array_size] = {4, 0, 6, 5, 2};
int t = second_of(fixed_array_size, x);

14™ February 2025 5

Making proper use of const and constexpr

const-array-fixed.cpp - fixed as follows:

If x[]in main() is a const int array, or even
“constexpr” (which is stronger than
“const”), we must make the x parameter
in second_of() const int*.

1. Variables are declared as const if we do
not plan to modify them after initialization.
If their value can be determined at compile
time, we can even use “constexpr”.

2. We declare pointers to const (of type T)
as const T*. (References as const T&.)

3. Pointers that are constant (i.e., have as
value an address that cannot be changed)
are of the type T* const. This can can be
combined with the above: const T* const.

int second_of(const int N, const int* const x) {
int largest = x[0];
int second_largest
= std::numeric_limits<int>::min();

for(inti=1;i<N; i++)
if(x[i] > largest) {
second_largest = largest;
largest = x[i];
}
else if(x[i] > second_largest)
second_largest = x[i];
return second_largest;

}

int main() {
constexpr int fixed_array_size = 5;

constexpr int x[fixed_array_size] = {4, 0, 6, 5, 2};

const int t = second_of(fixed_array_size, x);

}

“const”, pass by reference, and const pointers

1) If you can pass by value, that is always to be preferred!
2) If you pass an argument by reference, the compiler assumes that the
function will modity it. Write “const” whenever that's not the case.

An array is a pointer. Therefore it is impossible to pass an array by value. If you
don't intend the function to write to the array, it should be a const parameter.

Pay attention to C++ syntax for combining pointers with “const”. lllustration:

intv = 3;

constint x[3] = {1, v, v*v};
const int*y = &x[1];

int* const pv = &v;

const int* const z = &x[2];

(*pv)++;
y++;

// x is an array of constant integers

//'y is a pointer to a constant integer
// pv will forever point to address of v
// z will forever point to address of x[2]

// this is legal, we may change *pv, just not pv
// this is legal, we may changey, just not *y

Noregs milj@- og

U
M B I biovitskaplege

universitet

2 Memory and objects

2.4 Constants & immutability

2.5 Streams and file I/0
2.6 Class hierarchies

INF205 14" February 2025

I/O operator overloading

See example code io-operator-overloading.zip for the following.

Assume that for some class C, we have defined methods that write content to
a stream, or that analogously read from a stream.

void C::out(ostream* target) const { void C::in(istream™* source) {
*target << ... ; *source >> ... ;

} }

You can convert this to overloaded I/O operator definitions:

ostreamé& operator<<(istream& operator>>(istream& str, C& x)
ostream& str, const C& x {

) const { x.in(&str);
x.out(&str); return str; Now you can use the operator <<
return str; } and the operator >> on objects of

1 type C just like for numbers, etc.

Advice: |Input & output methods/operators should use the same serialization.

Example file: io-operator-overloading.zip 9

File input/output

We must serialize the data in order to store them in a file!

To transfer data through a communication channel as a message, the data
items and their parts need to be serialized (ordered) in a well-defined way that
is understood both by the sender and the receiver.

— As a contiguous chunk of memory, if the exchange is memory-based.
— As afile, iffile I/O is the mechanism by which data are exchanged.

File stream objects can be used in order to read or write a file.

// open in-filestream
std::ifstream infile(argv[1]); // file name given as command-line argument argv[1]

10

Remark: Strings in C and C++

The C++ language only prescribes what functionalities a std::string should
provide, not how it is realized at the memory level, which is up to the compiler.

Most implementations remain close to that from the C language, where
character arrays terminated by the null character \O' are employed. (If you
want to enforce this, you can also still use all the C style constructs explicitly.)

string s = "INF205"; or char s[] = "INF205"; produce the following in memory:

I|I INI IFI I2I IOI I5I I\OI

73 78 70 50 48 53 0

Also to ensure backwards compatibility with C, string literals between double
quotation marks such as "INF205" are of the type const char* (not std::string).
Between single quotation marks there is always a char, such as char x = 'a’;

11

Remark: Strings in C and C++

C++ strings may be the same as arrays at the memory level, but they are not
arrays to the language. Therefore, it is possible to pass C++ strings by value.

C strings, however, can never be passed by value because they are arrays.

void increment_at(int p, char* str) void increment_at(int p, std::string str)
{ {
strip]++; str[pl++;
} }
int main() int main()
{ {
char c_style_str[] = "INF205"; std::string cpp_style_str = "INF205";
increment_at(5, c_style_str); increment_at(5, cpp_style_str);
cout << c_style_str << "\n"; cout << cpp_style_str << "\n";
} }

Example file: string-argument-passing.cpp
12

Noregs milj@- og

U
B biovitskaplege
M universitet
N

2 Memory and objects

2.4 Constants & immutability

2.5 Streams and file I/0
2.6 Class hierarchies

INF205 14" February 2025

Institutt for datavitskap

Sections 5.3-5.5

Core Guidelines:

C.120, C.121
C.146 -C.148

(and more in “C")

Why object orientation?

The job of variables is to store data. In object oriented programming (OOP)

the focus is on how data belong together and how we can facilitate safe and

correct access to data. How do data-centered tools (DBs, etc.) present data?

Example: “Largest cities by

country” query on Wikidata.

I wisoata query service

| E=> Eksempler | | Sperringsbygger | | @ Hielp |T‘ | ¥ Flere verkiay ‘-| Xp norsk (bokmal)

i
P

CRIVER N o

f B

1 #Largest cities per country
2 SELECT DISTINCT ?city 7cityLabel ?population ?country ?countrylLabel ?loc WHERE {

3

[RN - BT

19 }
| 20 ORDER BY DESC(?population)

{

SELECT (MAX(?population_} AS ?population) ?country WHERE {
7city wdt:P31/wdt:P279* wd:Q515 .
?city wdt:P1682 ?population_ .

?city wdt:P17 ?country .

}

GROUP BY ?country

ORDER BY DESC(?population)

3
?7city wdt:P31/wdt:P279* wd:Q515 .
?city wdt:P1882 Fpopulation .
?city wdt:P17 ?country .
?Pcity wdt:P625 ?loc .
SERVICE wikibase:label {
bd:serviceParam wikibase:language "en" .

¥

290 resultater i lopet av 4117 ms <> Kode X.Last ned~ & Lenke~

~
L=

city

Q wd:Q172

Q wd:Q1490

Q wd:Q585

Q wd:Q1761

Q wd:Q1781

Q wd:Q2807

Q wd:Q60

Q wd:Q240

Q wd:Q1842

Q wd:Q1757

Q wd:Q1754

Q wd:Q1748

Q wd:Q270

cityLabel

Toronto

Tokyo

Oslo

Dublin

Budapest

Madrid

New York City

Brussels-Capital
Region

Luxembourg

Helsinki

Stockholm

Copenhagen

Warsaw

population

2731571

14047594

693494

553165

1723836

3305408

8804190

1218255

128512

643272

978770

644431

1790658

country

Qwd:Q16

Qwd:Q17

Q wd:Q20

Q wd:Q27

Q wd:Q28

Q wd:Q29

Q wd:Q30

Q wd:Q31

Q wd:Q32

Q wd:Q33

Q wd:Q34

Q wd:Q35

Q wd:Q36

v

countryLabel

Canada

Japan

Norway

Republic of Ireland

Hungary

Spain

United Siates of
America

Belgium

Luxembourg

Finland

Sweden

Denmark

Poland

loc

Point(-79.386666666 |
43.670277777)

Point(139.691722222
35.688555555)

Point(10.738888888
59.913333333)

Point(-8.260277777
53.348722222)

Point(19.040833333
47.498333333)

Point(-3.7025
40.416666666)

Point(-74.0 40.7)

Point{4.3525
50.846666666)

Point(6.132777777
49.610555555)

Point(24.93417 60.17556)

Point(18.068611111
59.328444444)

Point(12.568888888
55.676111111)

Point(21.011111111
52.23)

14

Entity-relationship (E-R) diagrams

particular:

ObJeCt individual

entity

ID
Qwd:Q172
Q wd:Q1490
Q wd:Q585
Qwd:Q1761
Qwd:Q1781
Q wd:Q2807
Q wd:Q60
Q wd:Q240

Q wd:Q1842
Qwd:Q1757

Qwd:Q1754
Qwd:Q1748

Q wd:Q270

name

Toronto

Tokyo

Oslo

Dublin

Budapest

Madrid

New York City

Brussels-Capital
Region

Luxembourg
Helsinki
Stockholm

Copenhagen

Warsaw

relationship

(sometimes: attribute)

property

.
population
2731571 Q
14047594 Quwd:ate
£93494 Qwd:Q17
553165 P Qwd:Q2o
- -
1723836 Q wd:Q27
T P Qudaze
— B Qudaee
<
1218255 Q wd:as0
-
128512 Q wd:31
643272 P Qwd:Q32
978770 P Qwd:Q33
644431 P Quwd034
-
D Q wd:Q35
»
Q wd:Q36

City entity set

name
Canada
Japan
Norway
Republic of Ireland
Hungary
Spain

United States of
America

Belgium

Luxembourg
Finland

Sweden
Denmark

Poland

Country entity set

15

Designing classes: Entity-relationship diagrams

entity (sometimes: attribute)
articular: object ropert
P ! individual property
. entity type . (sometimes: attribute type)
universal: class attribute
concept (in OWL: DatatypeProperty)
City
Country
long, unique | ID
. - int, unique | ID
std::string | name .
' . std::string | name
int population

16

Designing classes: Entity-relationship diagrams

(sometimes: attribute)

entity
articular: object relationshi ropert
P JE individual P property
entity type relationship type (sometimes: attribute type)
universal: class relation attribute
concept (in OWL: ObjectProperty) (in OWL: DatatypeProperty)
City

Country

ID
isCitylInCountry isCountryOfCity Q
name
. name
population

“every City is in such a relationship”

"It is an N-to-1 relation from Cities to Countries”

17

Implement relations using non-owning pointers

By storing a pointer to object B as a property of object A, we can encode the
relationship between A and B, so that methods from A can access B.

This can go both ways, if needed. Then B also has a pointer to A as a property:

class City class Country
{ {
public: public:
City(string in_name, int in_population, Country* in_country); Country(string in_name);

void add_city(City* c);

private:
long ID;
string name; private:
long population; int ID;
string name;
Country* country; vector<City*> cities;

h I
Example file: city-country.zip 18

E-R notation: Taxonomy/class hierarchy

Example from Silberschatz et al." (Fig. 6.18):

/

Person

Employee

e

ID
name
Street

city

salary

Instructor

rank

'A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, 7th int. stud. edn., McGraw-Hill, 2019.

\

Secretary

hours_per_week

L

Student

tot_credits

19

E-R diagrams on draw.io and Chowlk-2

The draw.io tool can be used for E-R diagrams using a variety of conventions.

With Chowlk by Poveda Villalén et al.,' 2 these can be converted to ontologies.

bot:Building bot:Storey

building:Building r-==-+{all) bothasStorey-- - building:Storey
. o ‘buildingifcidentifier (1..1): String :
building:buildingAdads 0.dkSwng | 0000 e--.--{REGNGIGHENINEn{L.S) SINg ot:Eleme
|building:buildingAddress (0..1): String : ibothasSimple3DModel (0..1): String " ' . fmmmen ~(all) bothasSubElement
ibuilding:ifcldentifier (1..1): String H , : H H
ibot:hasSimple3DModel (0..1): String (some) bot:containsZ (all) building:hasAp H 4_____5
iwgsg4_pos:long (0..1) ; : bot:Zone | peemmmesemecmeecemecooood > building:Element
'wgs84_pos:lat (0..1) H f HE ; o
iwgs84_posalt (0..1) H | P \building:ifcldentifier (1..1): String {€-=- building:includesElement (1..N)- - --J RS
' ' : P ibothasSimple3DModel (0..1): String - - buiding:isPartoiSystem (0..1) -~ Ing:Sy
------ > building:Apartment -t 4
______ ‘buildingifcidentifier (1..1): String ; : (all) buikding:hasConstruction [~ building:PhotovoltaicSystem
! “bot:hasSimple3DModel (0..1): String ' :
el L EEC L SR P e H — building:SolarSystem
: (al) bothasElement @ ___________________________
(all) bothasSpace | H - i [building:VentilationSystem
| A H
; X ¥ ¥ I building:HeatingSystem
L > building:Space building:M ILayerSet building: M: ialP! building: 1tSet
ibuilding:ifcidentifier (1..1): String : H : i [building:CoolingSystem
\building:maxOccupants (0..1): Integer ! building ialLayer (1..N) building: i (L..N) building: i i (1.N)
ibuilding:minOccupants (0..1): Integer | | | | — building:FenestrationSystem
ibot:hasSimple3DModel (0..1): String | ¥ 4 ¥
""""""""""""""""""" building:MaterialLayer building:Material Profile building:MaterialConstituent

building:thickness (0..1):Float
+ building:position (0..1):Integer :

(al) buildit rm::nasMalerial '
i (all) building“hasMaterial
Yy H

---------------- >| props:Material |<—-——--—-—»—-—-:

M. Poveda Villalon et al., in Proc. VOILA23, CEUR Works. Proc. 3508: 2 (link to paper), 2023.

?Chowlk template: https://chowlk.linkeddata.es/static/resources/chowlk-library-complete.xml

Lightweight version: https://chowlk.linkeddata.es/static/resources/chowlk-library-lightweight.xm| 20

https://ceur-ws.org/Vol-3508/paper2.pdf
https://chowlk.linkeddata.es/static/resources/chowlk-library-complete.xml
https://chowlk.linkeddata.es/static/resources/chowlk-library-lightweight.xml
https://chowlk.linkeddata.es/examples.html

Taxonomy (class hierarchy)

Classes can stand in a hierarchical relationship: A more general superclass
and its more specific subclass (also, “"derived class” or “child”).

An object of the subclass then (automatically) is also an object of the
superclass; it has all the members defined in its class definition, but also
inherits the members defined for the superclass, to which it also belongs.

Literaturelndex

/ \ Example file: literature-indices.zip

Booklndex JournalArticlelndex

21

['m-

u
o

Class hierarchy implementation in C++ " —

Norwegian University
of Life Sciences

Classes can stand in a hierarchical relationship: A more general superclass

and its more specific subclass (also, “"derived class” or “child”).

An object of the subclass then (automatically) is also an object of the

superclass; it has all the members defined in its class definition, but also

inherits the members defined for the superclass, to which it also belongs.

Literaturelndex

/ \ Example file: literature-indices.zip

BookIindex JournalArticleIndex
class Literaturelndex { class JournalArticleIndex: public Literaturelndex {
public: public:
virtual int next_page(); int next_page();

private: private:

int year = 0; int volume = 0; PHEfPERGT VT

JournalArticleIndex has the property
volume, but it also inherits the

It can override the next_page

|3 |3 method definition from its

INF205 14t February 2025 superclass, because itis virtual. 99

r' J Norwegian University
- of Life Sciences

Abstract classes, concrete subclasses

The code sequences-int.zip has an abstract class at the top of a class hierarchy.

Such a class has a pure virtual method that is only declared, but not defined.
The declaration uses the construction “virtual ... method(...) = 0;".

I

Sequence

e

DynamicArray SinglyLinkedList DoublyLinkedList

class Sequence

{
public:

virtual bool empty() const = 0; // whether sequence isempty abstract) if it does not have
virtual size_t size() const = 0; // size (humber of items)

A class is concrete (i.e., not

any pure virtual methods.
virtual int& front() = 0; // return reference to first item

virtual int& back() = 0; // return reference to final item If it has an abstract

virtual int& at(inti) = 0; // reference to item atindex i] .
o) | neexd superclass, it must override

) (define) all its pure virtual
INF205 14" February 2025 ~ Method declarations. 53

r' I Norwegian University
- of Life Sciences

Core guidelines

An abstract class might contain “normal” methods in addition to its pure
virtual method(s). If it only has pure virtual methods, it is a pure abstract class.
Such classes are used to specify interfaces.

— C.120: Use class hierarchies to represent concepts with inherent

hierarchical structure (only).
— C.121: If a base class is used as an interface, make it a pure abstract

class.
— C.122: Use abstract classes as interfaces when complete separation of

interface and implementation is needed.

Concerning virtual methods and overriding:

— C.128: Virtual functions should specify exactly one of virtual, override,

or final.

INF205 14™ February 2025 24

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

Norges miljg- og

e
biovitenskapelige
M

universitet

INF205
Resource-efficient programming

2 Memory and objects

2.1 Pass byvalue/reference 2.4 Immutability
2.2 Memory allocation 2.5 Streams and file I/O
2.3 C++ object orientation 2.6 Class hierarchies

INF205 14™ February 2025

