
INF205 14th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

2 Memory and objects

2.1 Pass by value/reference 2.4 Immutability
2.2 Memory allocation 2.5 Streams and file I/O
2.3 C++ object orientation 2.6 Class hierarchies

214th February 2025INF205

Common mistakes

Repetition: We talked about three main kinds of mistakes in manual memory
management. What were they? (1) … … (2) … … (3) … …

Strategies that we had identified for trying to avoid these mistakes:

1) Avoid manual memory management if
possible; use the stack, not the heap.

● Don’t work with pointers unless there is
a clear advantage. Don’t pass by
reference without a good reason.

2) Assign clear responsibilities for what part
of the code is to allocate each data item
that you create on the heap.

● Create a “container” that “owns” it. If
suitable, library (e.g. STL) containers.

Smart pointers are very
elementary containers. They
have ownership over the
object to which they point.

Instead of T*, where T is the
type, we can use
std::unique_pointer<T> or
std::shared_pointer<T>.

See Core Guidelines I.11.

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-use-ptr

INF205 14th February 2025

Digitalisering på Ås

Institutt for datavitskap

2 Memory and objects

2.4 Constants & immutability
2.5 Streams and file I/O
2.6 Class hierarchies

book Section 1.6

414th February 2025INF205

The keywords auto, const, constexpr

const: Used to declare an immutable variable
constexpr: Immutable and, additionally, can be evaluated at compile time

Con.1: By default, make objects immutable
“make objects non-const only when there is a need to change their value”

Con.4: Use const to define objects with values that do not change
Con.5: Use constexpr for values that can be computed at compile time

auto: Leave it to the compiler to determine the type

This requires an initialization. for (auto i = 0; i < 26; i++)
{
 auto c = 'a';
 c += i;
 cout << c;
}

Remark:

typeid(x).name() can
be used to output the
type assigned to x.

should
become int

should
become char

constexpr int space_dimension = 3; int n = 0; cin >> n; const int num_coords = n*space_dimension;

514th February 2025INF205

“const” parameters of a function

If we pass an argument by reference but
do not intend to modify it, the parameter
should be declared as const. Such as:

void do_something(const int N);
void do_something(const int* const x);
void do_something(const int x[]);

Const variables may only be passed by
reference if the parameter is also const.

int second_of(int N, int* x) {
int largest = x[0];

 int second_largest
= std::numeric_limits<int>::min();

for(int i = 1; i < N; i++)
if(x[i] > largest) {

second_largest = largest;
largest = x[i];

}
else if(x[i] > second_largest)

second_largest = x[i];
return second_largest;

}

int main() {
 int fixed_array_size = 5;
 const int x[fixed_array_size] = {4, 0, 6, 5, 2};
 int t = second_of(fixed_array_size, x);
}

1. What is the code supposed to do?

2. Why does it not compile?

3. What should be changed?

4. What more const/-expr can we add?

const-array-broken.cpp – does not compile

6

Making proper use of const and constexpr

1. Variables are declared as const if we do
not plan to modify them after initialization.
If their value can be determined at compile
time, we can even use “constexpr”.

2. We declare pointers to const (of type T)
as const T*. (References as const T&.)

3. Pointers that are constant (i.e., have as
value an address that cannot be changed)
are of the type T* const. This can can be
combined with the above: const T* const.

int second_of(const int N, const int* const x) {
int largest = x[0];

 int second_largest
= std::numeric_limits<int>::min();

for(int i = 1; i < N; i++)
if(x[i] > largest) {

second_largest = largest;
largest = x[i];

}
else if(x[i] > second_largest)

second_largest = x[i];
return second_largest;

}

int main() {
 constexpr int fixed_array_size = 5;
 constexpr int x[fixed_array_size] = {4, 0, 6, 5, 2};
 const int t = second_of(fixed_array_size, x);
}

const-array-fixed.cpp – fixed as follows:

If x[] in main() is a const int array, or even
“constexpr” (which is stronger than
“const”), we must make the x parameter
in second_of() const int*.

7

“const”, pass by reference, and const pointers

1) If you can pass by value, that is always to be preferred!
2) If you pass an argument by reference, the compiler assumes that the

function will modify it. Write “const” whenever that’s not the case.

An array is a pointer. Therefore it is impossible to pass an array by value. If you
don’t intend the function to write to the array, it should be a const parameter.

Pay attention to C++ syntax for combining pointers with “const”. Illustration:

int v = 3;
const int x[3] = {1, v, v*v}; // x is an array of constant integers
const int* y = &x[1]; // y is a pointer to a constant integer
int* const pv = &v; // pv will forever point to address of v
const int* const z = &x[2]; // z will forever point to address of x[2]

(*pv)++; // this is legal, we may change *pv, just not pv
y++; // this is legal, we may change y, just not *y

INF205 14th February 2025

Digitalisering på Ås

Institutt for datavitskap

2 Memory and objects

2.4 Constants & immutability
2.5 Streams and file I/O
2.6 Class hierarchies

9

I/O operator overloading

See example code io-operator-overloading.zip for the following.

Advice: Input & output methods/operators should use the same serialization.

Assume that for some class C, we have defined methods that write content to
a stream, or that analogously read from a stream.

void C::out(ostream* target) const {
 *target << … ;
}

void C::in(istream* source) {
 *source >> … ;
}

ostream& operator<<(
 ostream& str, const C& x
) const {
 x.out(&str);
 return str;
}

istream& operator>>(istream& str, C& x)
{
 x.in(&str);
 return str;
}

You can convert this to overloaded I/O operator definitions:

Now you can use the operator <<
and the operator >> on objects of
type C just like for numbers, etc.

Example file: io-operator-overloading.zip

10

File input/output

We must serialize the data in order to store them in a file!

To transfer data through a communication channel as a message, the data
items and their parts need to be serialized (ordered) in a well-defined way that
is understood both by the sender and the receiver.

– As a contiguous chunk of memory, if the exchange is memory-based.
– As a file, if file I/O is the mechanism by which data are exchanged.

File stream objects can be used in order to read or write a file.

 // open in-filestream
 std::ifstream infile(argv[1]);

// file name given as command-line argument argv[1]

11

Remark: Strings in C and C++

The C++ language only prescribes what functionalities a std::string should
provide, not how it is realized at the memory level, which is up to the compiler.

Most implementations remain close to that from the C language, where
character arrays terminated by the null character '\0' are employed. (If you
want to enforce this, you can also still use all the C style constructs explicitly.)

Also to ensure backwards compatibility with C, string literals between double
quotation marks such as "INF205" are of the type const char* (not std::string).
Between single quotation marks there is always a char, such as char x = 'a';

'I' 'N' 'F' '2' '0' '5' '\0'

string s = "INF205"; or char s[] = "INF205"; produce the following in memory:

73 78 70 50 48 53 0

12

Remark: Strings in C and C++

C++ strings may be the same as arrays at the memory level, but they are not
arrays to the language. Therefore, it is possible to pass C++ strings by value.

C strings, however, can never be passed by value because they are arrays.

void increment_at(int p, char* str)
{
 str[p]++;
}

int main()
{
 char c_style_str[] = "INF205";
 increment_at(5, c_style_str);
 cout << c_style_str << "\n";
}

void increment_at(int p, std::string str)
{
 str[p]++;
}

int main()
{
 std::string cpp_style_str = "INF205";
 increment_at(5, cpp_style_str);
 cout << cpp_style_str << "\n";
}

Example file: string-argument-passing.cpp

INF205 14th February 2025

Digitalisering på Ås

Institutt for datavitskap

2 Memory and objects

2.4 Constants & immutability
2.5 Streams and file I/O
2.6 Class hierarchies

Sections 5.3 – 5.5

Core Guidelines:

C.120, C.121
C.146 – C.148

(and more in “C”)

14

Why object orientation?

The job of variables is to store data. In object oriented programming (OOP)
the focus is on how data belong together and how we can facilitate safe and
correct access to data. How do data-centered tools (DBs, etc.) present data?

Example: “Largest cities by
country” query on Wikidata.

15

Entity-relationship (E-R) diagrams

ID name population

City entity set

ID name

Country entity set

particular: object relationship property
entity (sometimes: attribute)

individual

16

Designing classes: Entity-relationship diagrams

particular: object relationship property

universal: class relation attribute

entity

entity type

(sometimes: attribute)

(sometimes: attribute type)
individual

concept (in OWL: DatatypeProperty)

 City

ID

name

population

 Country

ID

name

long, unique

std::string

int

int, unique

std::string

17

Designing classes: Entity-relationship diagrams

particular: object relationship property

universal: class relation attribute

entity

entity type relationship type

(sometimes: attribute)

(sometimes: attribute type)
individual

concept (in OWL: ObjectProperty) (in OWL: DatatypeProperty)

 City

ID

name

population

 Country

ID

name

city_country
isCityInCountry isCountryOfCity

“every City is in such a relationship”

“it is an N-to-1 relation from Cities to Countries”

18

Implement relations using non-owning pointers

By storing a pointer to object B as a property of object A, we can encode the
relationship between A and B, so that methods from A can access B.

This can go both ways, if needed. Then B also has a pointer to A as a property:

Example file: city-country.zip

 class City
 {
 public:
 City(string in_name, int in_population, Country* in_country);
 …

 private:
 long ID;
 string name;
 long population;

 Country* country;
 };

 class Country
 {
 public:
 Country(string in_name);

 void add_city(City* c);
 ...

 private:
 int ID;
 string name;
 vector<City*> cities;
 };

19

E-R notation: Taxonomy/class hierarchy

Example from Silberschatz et al.1 (Fig. 6.18):

 Person

ID

name

street

city Employee

salary

 Student

tot_credits

 Instructor

rank

 Secretary

hours_per_week

1A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, 7th int. stud. edn., McGraw-Hill, 2019.

20

E-R diagrams on draw.io and Chowlk1, 2

1M. Poveda Villalón et al., in Proc. VOILA23, CEUR Works. Proc. 3508: 2 (link to paper), 2023.

2Chowlk template: https://chowlk.linkeddata.es/static/resources/chowlk-library-complete.xml

 Lightweight version: https://chowlk.linkeddata.es/static/resources/chowlk-library-lightweight.xml

The draw.io tool can be used for E-R diagrams using a variety of conventions.

With Chowlk by Poveda Villalón et al.,1, 2 these can be converted to ontologies.

https://ceur-ws.org/Vol-3508/paper2.pdf
https://chowlk.linkeddata.es/static/resources/chowlk-library-complete.xml
https://chowlk.linkeddata.es/static/resources/chowlk-library-lightweight.xml
https://chowlk.linkeddata.es/examples.html

21

Taxonomy (class hierarchy)

Classes can stand in a hierarchical relationship: A more general superclass
and its more specific subclass (also, “derived class” or “child”).

An object of the subclass then (automatically) is also an object of the
superclass; it has all the members defined in its class definition, but also
inherits the members defined for the superclass, to which it also belongs.

LiteratureIndex

BookIndex JournalArticleIndex

Example file: literature-indices.zip

2214th February 2025INF205

Class hierarchy implementation in C++

Classes can stand in a hierarchical relationship: A more general superclass
and its more specific subclass (also, “derived class” or “child”).

An object of the subclass then (automatically) is also an object of the
superclass; it has all the members defined in its class definition, but also
inherits the members defined for the superclass, to which it also belongs.

LiteratureIndex

BookIndex JournalArticleIndex

class LiteratureIndex {
public:
 virtual int next_page();
 …
private:
 int year = 0;
 …
};

class JournalArticleIndex: public LiteratureIndex {
public:
 int next_page();
 …
private:
 int volume = 0;
 …
};

JournalArticleIndex has the property
volume, but it also inherits the
property year.

It can override the next_page
method definition from its
superclass, because it is virtual.

Example file: literature-indices.zip

2314th February 2025INF205

Abstract classes, concrete subclasses

The code sequences-int.zip has an abstract class at the top of a class hierarchy.

Such a class has a pure virtual method that is only declared, but not defined.
The declaration uses the construction “virtual … method(…) = 0;”.

Sequence

SinglyLinkedListDynamicArray DoublyLinkedList

 class Sequence
 {
 public:
 virtual bool empty() const = 0; // whether sequence is empty
 virtual size_t size() const = 0; // size (number of items)

 virtual int& front() = 0; // return reference to first item
 virtual int& back() = 0; // return reference to final item

 virtual int& at(int i) = 0; // reference to item at index i

 ...
 };

A class is concrete (i.e., not
abstract) if it does not have
any pure virtual methods.

If it has an abstract
superclass, it must override
(define) all its pure virtual
method declarations.

2414th February 2025INF205

Core guidelines

An abstract class might contain “normal” methods in addition to its pure
virtual method(s). If it only has pure virtual methods, it is a pure abstract class.
Such classes are used to specify interfaces.

– C.120: Use class hierarchies to represent concepts with inherent

hierarchical structure (only).
– C.121: If a base class is used as an interface, make it a pure abstract

class.
– C.122: Use abstract classes as interfaces when complete separation of

interface and implementation is needed.

Concerning virtual methods and overriding:

– C.128: Virtual functions should specify exactly one of virtual, override,

or final.

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

INF205 14th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

2 Memory and objects

2.1 Pass by value/reference 2.4 Immutability
2.2 Memory allocation 2.5 Streams and file I/O
2.3 C++ object orientation 2.6 Class hierarchies

