
INF205 12th February 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

2 The C++ programming language

2.1 Features of C++
2.2 Pointers and arrays
2.3 Pass by value or reference

2.4 Memory allocation
2.5 Immutability and constants
2.6 Working with libraries

212th February 2024INF205

Structure of the course

1) Introduction (week 6)
● Getting started – the lecture last week.

2) The C/C++ programming language(s) (weeks 7 and 8)
● Essential features that make C/C++ different from Python; e.g., dealing

with memory allocation and deallocation explicitly, using pointers.

3) Data structures (weeks 9 to 11)
● Linked data structures, containers, C++ standard template library.
● Memory management for container data structures.

4) Concurrency (week 12 to 17)
● MPI and ROS2 for parallel programming and concurrent processes.

5) Production and optimization (week 18 and 19)
● Good practices and useful tools for programming projects.

312th February 2024INF205

Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.1

compilation

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

static array

procedural
programming???

???

???

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 12th February 2024

Digitalisering på Ås

Institutt for datavitskap

2 C++ basics

2.1 Features of C++

512th February 2024INF205

Functions / procedural programming

• Functions are named

• Each function has a distinct task

• It may have its own variables

• It may call another function, including calls to itself (recursion),

• It may return a value; it must have a return type (which may be void)

• It may accept arguments

• Function parameters are the variables listed in the function’s definition.
Function arguments are the values passed to the function, which are
assigned to the function’s parameters at runtime.

In many procedural programming languages, including C/C++ and Python,
code blocks that can be called from other blocks are called functions. However,
do not confuse procedural programming (as a programming paradigm) with
functional programming, a name given to a very different approach (LISP, etc.).

6

Functions and their stack frames

Stack-like memory management

When a function is called, a known amount
of memory must be allocated for its variables
(including parameters) “on top of the stack.”

When the function returns, its memory can
be released; the calling method and its
variables become the top of the stack again.

The lifetime of local variables in a stack
frame is limited to the function’s runtime.

int select(int a, int b)
{
 if(a%2 == 0) return a;
 else return b;
}

int user_input()
{
 int y = 0, z = 0;
 std::cin >> y >> z;
 return select(y, z);
}

int main()
{
 int x = user_input();
}main int x retv (int)

>> select retv (int)int a
int b...

retv (int)user_input int y int z

Example file: three-functions.cpp; compile with “g++ -g3 -o …” and run using gdb.

7

Observations: Stack

Backtrace and stack inspection using gdb

– Compile with “-g” or “-g3” option
– gdb three-functions

• break three-functions.cpp:6
• run

• bt [“backtrace”]

int select(int a, int b)
{
 if(a%2 == 0) return a;
 else return b;
}

int user_input()
{
 int y = 0, z = 0;
 std::cin >> y >> z;
 return select(y, z);
}

int main()
{
 int x = user_input();
}main int x retv (int)

select retv (int)int a
int b

retv (int)user_input int y int z

#0 select (a=4, b=3) at three-functions.cpp:6
#1 [...] user_input () at three-functions.cpp:14
#2 [...] main () at three-functions.cpp:19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Breakpoint 1, select (a=4, b=3) at three-functions.cpp:6
6 if(a%2 == 0) return a;

stack
frame 0

stack
frame 1

stack frame 2

8

Overloading and namespaces

Function overloading (identical name within the same namespace, if any) and
the use of multiple namespaces are technically different mechanisms.
However, they become similar if equal names occur in multiple namespaces.

namespace task_a
{
 void run(double x, double y);
}
namespace
{
 void run(int x, int y);
}

namespace task_b
{
 void run(int x, int y);
 void run(double x, double y);
}

int main()
{
 using namespace task_a;
 run(1.0, 1.0);
}

int main()
{
 using namespace task_b;
 run(1.0, 1.0);
}

namespace task_c
{
 void run(double x, double y);
}
namespace
{
 void run(double x, double y);
}

int main()
{
 run(1.0, 1.0);
 task_c::run(1.0, 1.0);
}

In what case are we strictly overloading “run” (within a single namespace)?
In each of the cases, which version of “run” will be executed?

Example file: namespaces-overloading.zip

9

C++ Core Guidelines

• In: Introduction
• P: Philosophy
• I: Interfaces
• F: Functions
• C: Classes and class

hierarchies
• Enum: Enumerations
• R: Resource management
• ES: Expressions and

statements

• Per: Performance
• CP: Concurrency and

parallelism
• E: Error handling
• Con: Constants and immutability
• T: Templates and generic

programming
• CPL: C-style programming
• SF: Source files
• SL: The Standard Library

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

10

Selected guidelines on namespaces

(This makes it easy to distinguish “helper” code from that needed outside.)

SF.20: Use namespaces to express logical structure

Use of the “unnamed namespace” construction: namespace{ … }

– SF.21: Don’t use an unnamed namespace in a header
– SF.22: Use an unnamed namespace for all internal/non-exported entities

void do_task_a(int x);
void do_task_b(int x);
void do_task_c(int x);
…

namespace
{
 int transform(int x) { … }
}

void do_task_a(int x)
{
 int y = transform(x);
 …
}

header file, *.h

code file, *.cpp
was declared in the header

11

Selected guidelines on functions

Core Guidelines on functions:
– F.1: “Package” meaningful operations as carefully named functions
– F.2: A function should perform a single logical operation
– F.3: Keep functions short and simple

…
– F.46: int is the return type for main()

More traditional style uses assert(…).

int area(int height, int width)
{
 Expects(height > 0);
 int retv = height*width;
 Ensures(retv > 0);
 return retv;
}

example based on Grimm’s book, p.443:

I.6: Prefer Expects() for expressing preconditions
I.7: State postconditions [with Ensures()]

Example files: conditions-gsl.cpp (modern) and conditions-assert.cpp (traditional).

12

Selected guidelines on signed/unsigned integers

Core Guidelines style rules against “unsigned”.
These rules use elements taken from the Guidelines Support Library (GSL).

ES.102: Use signed types for arithmetic

ES.106: Don't try to avoid negative values by using “unsigned”

ES.107: Don't use unsigned for subscripts [e.g., array indices], prefer gsl::index

The reasoning against a normal (signed)
integer is that “int might not be big enough.”

Except in the very rare occurrence where
that could be the case, we can use int.

Remember the pitfall: For arithmetics over “unsigned” variables, the result of
the subtraction “2 – 3” is the value 4 294 967 295.

INF205 12th February 2024

Digitalisering på Ås

Institutt for datavitskap

2 C++ basics

2.1 Features of C++
2.2 Pointers and arrays

Section 1.7

14

What is a pointer?

Compare:

– An int is a variable that contains an integer number, such as 7.
– A std::string is a variable that contains a string, such as "INF205".

– A pointer to X, of type X*, is a variable that contains a memory address,
such as 0x7ffeaea5174c. It is meant for an address of a value of type X.

– It is good practice to set pointers to nullptr (“null pointer”) whenever it
is impossible to assign them a valid memory address.

– We can allocate memory for an X object by hand, with X* pt = new X.
– We can deallocate (release) the memory again by hand, with delete pt.

A pointer is a variable that has a memory address as its value.

– double* b is a pointer to an address for storing a double value.
– The address of an object is obtained by referencing, e.g., pt = &var;
– While pt is the address, we can dereference it (*pt) to access the content.

15

Operators for referencing (&) and dereferencing (*)

Referencing operator &:

– Used to obtain the address of a variable: &x is the address of x.
– If x has type X, the address has the type X*, i.e., “pointer to X.”

int x = 5; int* y = &x;

– A second, independent use of this operator is “passing a reference” as
a function argument, e.g., as in void increment(int& x);

Dereferencing operator *:

– If y is a pointer of type X* (pointer to X), the value of y is an address.
– To access the value stored at the address y, we dereference it as *y.
– The value stored at y, and accessed by *y, is then of type X.
– & and * are inverse operators, therefore, *(&x) is the same as x:

int x = 5; int* y = &x; cout << x << “ is the same as “ << *y;

16

Allocate with new, deallocate with delete

Allocation: Reserve memory to store data.
Deallocation: Release the memory.

On the stack

The stack is already handled completely and safely by the compiler. Memory
on the stack (local variables of functions) is allocated as part of a stack frame
when the function is called. It is deallocated again when the function returns.

On the heap

Memory on the heap is managed independent of the stack, at runtime,
subject to explicit allocation and deallocation instructions that must come
from the programmer. There is no garbage collection in C++!

– Allocation is done with new. Example: int* i = new int(42);
– Deallocation is done with delete. Example: delete i;

initialization to *i = 42

17

C/C++ arrays are pointers

An array contains a sequence of elements of the same type, arranged
contiguously in memory. This supports fast access using pointer arithmetics.
Once created, the size of a C/C++ array is fixed; we cannot append elements.

In C/C++, the type of an array such as int[] is the same as the corresponding
pointer type int*, i.e., the array actually is a pointer. Its value is an address at
which an integer is stored, namely, the memory address of the first element.

When x[i] is accessed, the compiler transforms this into x + sizeof(int) * i.

– Allocation is done with new. Example: int* i = new int[8]();
– Deallocation is done with delete[]. Example: delete[] i;

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &(x[0]) x + 3 = &(x[3]) x + 6 = &(x[6])

18

Summary: Allocation and deallocation of pointers

How do we declare a pointer?
– Like any other variable. Its type is a pointer type; e.g., int* my_int_pointer;

How do we initialize a pointer?
– Initialize to nullptr (pointer version of 0): int* my_int_pointer = nullptr;
– Initialize to another variable’s address: int* my_int_pointer = &my_index;
– Allocate memory on the heap: int* my_int_pointer = new int(0);

How do we deallocate a variable if it is stored on the heap?
– Delete the pointer to it. Example: b = new BookIndex; …; delete b;

How to release the memory if it is a local variable that is stored on the stack?
– Don’t do that! You can only call “delete” on memory allocated with “new”.

What if we call new, but there is not enough free memory left on the system?
– new VeryBigObject may throw an exception (a high-level construct).
– new(std::nothrow) VeryBigObject may return nullptr (low-level construct).

19

Summary: Allocation and deallocation of arrays

How do we declare a array?
– Give the size as constant expression in square brackets; e.g., int values[6];
– Also possible: Just declare a pointer; e.g., int* values;

How do we initialize an array?
– Explicitly give all the values: int values[] = {4, 2, 3, -7, 2, 3};
– Initialize to all zeroes, indicating the array size: int values[6] = { };
– Allocate memory with default initialization: int* values = new int[6]();

How do we deallocate an array if it is stored on the heap?
– Use delete[]. Example: b = new BookIndex[100](); …; delete[] b;
– Pitfall: If you use delete instead of delete[], only b[0] will be deallocated!

What if we call new, but there is not enough free memory left on the system?
– new BigObject[100000]() may throw an exception.
– new(std::nothrow) BigObject[100000]() may return nullptr.

INF205 12th February 2024

Digitalisering på Ås

Institutt for datavitskap

Tutorial scheduling

21

Registration to present at the tutorial session

It is a mandatory activity to
present once at the tutorial.

At present, we will have just
enough problems to discuss
so that everyone can present.

Therefore, all slots will be
used – where nobody signs
up, somebody will be chosen
and announced in advance
of the meeting.

INF205 12th February 2024

Digitalisering på Ås

Institutt for datavitskap

2 C++ basics

2.1 Features of C++
2.2 Pointers and arrays
2.3 Pass by value/reference Sections 1.9, 3.6

23

Pass by value in C++ (compared to Python)

In Python, object references are passed by value (i.e., “pass by object reference”):

Argument passing by object reference in Python (similarly, in Java)

address
&x

value
x address

&y
value

y

object x

x has changed

&y is &x

y.change()

function call f(x)

object reference “y”
object reference “x”

Argument passing by value

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x is 4

finally, x is still 4

initially, y is 4

y = 5

 &y is unrelated to &x

24

Pass by reference in C++ (compared to pass by value)

Pass by value: A new copy of the argument value(s) is created in memory. The
function works with the copy. The function cannot access the original variable.

Pass by reference: The function is enabled to access the original variable at its
address in memory. No copy is created. Changes affect the original variable.
C++ has two mechanisms for this: Passing a reference and passing a pointer.*

*Unfortunately there is some terminology confusion about this. We will call both “pass by reference.”

address
&x

value
x

address
&y = &x

value
y = x

variable x

x has changed

&y is &x
change yfunction

call f(x)

type X& reference yvariable x of type X
void f(X& y)

address
&x

value
x

value
y = &x

variable x

x has changed

y is &x
change *yfunction

call f(&x)

type X* pointer yvariable x of type X
void f(X* y)

25

Pass by reference vs. pass by value

Advantages of passing a function argument by value:

– Memory management is done at the stack level, by the compiler. The
programmer can relax and does not need to deal with this aspect.

– The stack can be optimized at compile time, and it is faster to access
memory on the stack because there is no need to look up an address.

– Variable lifetime coincides with the runtime of functions that use them.
– The value of the variable in the calling function is protected from any

intransparent changes by the called function.
– This makes the code more modular. It is easier to understand and even

verify the function. (The point of using local instead of global variables.)

Advantages of passing a function argument by reference:

There must be a reason there is a second mechanism, pass-by-reference. Even
Python uses it when dealing with objects. Discussion: What is the advantage?

26

Pass by reference using a pointer vs. a reference

Advantages of pass-by-reference using a reference:
– Some memory-related errors become less likely if we only work with

references; e.g., errors from applying incorrect pointer arithmetics.
– Looks more like Java, Python, and other modern high-level languages.

Advantages of pass-by-reference using a pointer:
– It is visible to the programmer at all times that we deal with memory.
– Looks more like C, and it is closer to the object-code representation.

Pointers and references are two equivalent notations for the same techniques.

void some_function(int& parameter) {
 …
 // convert the reference to a pointer
 int* y = ¶meter;
 // now we can work with pointer y
 …
}

void some_function(int* parameter) {
 …
 // convert the pointer to a reference
 int& x = *parameter;
 // now we can work with reference x
 …
}

2712th February 2024INF205

Remark: Strings in C and C++

The C++ language only prescribes what functionalities a std::string should
provide, not how it is realized at the memory level, which is up to the compiler.

Most implementations remain close to that from the C language, where
character arrays terminated by the null character '\0' are employed. (If you
want to enforce this, you can also still use all the C style constructs explicitly.)

Also to ensure backwards compatibility with C, string literals between double
quotation marks such as "INF205" are of the type const char* (not std::string).
Between single quotation marks there is always a char, such as char x = 'a';

'I' 'N' 'F' '2' '0' '5' '\0'

string s = "INF205"; or char s[] = "INF205"; produce the following in memory:

73 78 70 50 48 53 0

2812th February 2024INF205

Remark: Strings in C and C++

C++ strings may be the same as arrays at the memory level, but they are not
arrays to the language. Therefore, it is possible to pass C++ strings by value.

C strings, however, can never be passed by value because they are arrays.

void increment_at(int p, char* str)
{
 str[p]++;
}

int main()
{
 char c_style_str[] = "INF205";
 increment_at(5, c_style_str);
 cout << c_style_str << "\n";
}

void increment_at(int p, std::string str)
{
 str[p]++;
}

int main()
{
 std::string cpp_style_str = "INF205";
 increment_at(5, cpp_style_str);
 cout << cpp_style_str << "\n";
}

Example file: string-argument-passing.cpp

INF205 12th February 2024

Digitalisering på Ås

Institutt for datavitskap

Conclusion

3012th February 2024INF205

Weekly glossary concepts

What are essential concepts from this lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???
???

???

pointer

namespace

reference

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 12th February 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

2 The C++ programming language

2.1 Features of C++
2.2 Pointers and arrays
2.3 Pass by value or reference

2.4 Memory allocation
2.5 Immutability and constants
2.6 Working with libraries

