
INF205 19th February 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

2 The C++ programming language

2.1 Features of C++
2.2 Pointers and arrays
2.3 Pass by value or reference

2.4 Memory allocation
2.5 Immutability and constants
2.6 Working with libraries

219th February 2024INF205

Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???
???

???

pointer

namespace

reference

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 19th February 2024

Digitalisering på Ås

Institutt for datavitskap

2 C++ basics

2.1 Features of C++
2.2 Pointers and arrays
2.3 Pass by value/reference
2.4 Memory allocation

book Section 1.5

419th February 2024INF205

The three most typical memory bugs

1) Access a pointer that was not initialized, or that has the value nullptr, or that
for any other reason points to an invalid address in memory. (“Wild pointer.”)

• Question: Why is this dangerous?

2) Memory is allocated using new, but not deallocated again using delete.
This is called a memory leak.

• Question: Why is this dangerous?

3) Memory has been deallocated: Either it was on the stack in a stack frame
that has been removed, or there has been a delete statement. But the address
information was stored in a pointer that still exists: A dangling pointer!

• Question: Why is this dangerous?

519th February 2024INF205

Code that can produce wild pointers

#include <iostream>

void crop(int num_strings, char** strings, int characters_cropped);

int main(int argc, char** argv) {
int jump_to_index = 2;
crop(argc-1, argv+1, jump_to_index);

for(int i = 1; i < argc; i++)

std::cout << "Argument no. " << i << " was cropped to \"" << argv[i] << "\".\n";
}

void crop(int num_strings, char** strings, int characters_cropped) {

for(int i = 0; i < num_strings; i++)
 strings[i] += characters_cropped;

}

Example file: wildptr.cpp

1. What are argc and argv? Where do they come from?

Plan: Remove the first 2 characters
from each command-line argument.

Implementation: Simply jump ahead
by <characters_cropped> char’s,
that is, here, by 2 characters.

6

Code that can produce wild pointers

#include <iostream>

void crop(int num_strings, char** strings, int characters_cropped);

int main(int argc, char** argv) {
int jump_to_index = 2;
crop(argc-1, argv+1, jump_to_index);

for(int i = 1; i < argc; i++)

std::cout << "Argument no. " << i << " was cropped to \"" << argv[i] << "\".\n";
}

void crop(int num_strings, char** strings, int characters_cropped) {

for(int i = 0; i < num_strings; i++)

 strings[i] += characters_cropped;

}

2. What sort of a statement is this? Why do we need it?

3. Why this “-1” and “+1” on argc and argv?

4. How was this supposed to work?
When will it inadvertently generate
a wild pointer?

7

#include <cassert>
#include <cstring>
#include <iostream>

void crop(int num_strings, char** strings, int characters_cropped);

int main(int argc, char** argv) {
int jump_to_index = 2;
crop(argc-1, argv+1, jump_to_index);

for(int i = 1; i < argc; i++)

std::cout << "Argument no. " << i << " was cropped to \"" << argv[i] << "\".\n";
}

void crop(int num_strings, char** strings, int characters_cropped) {
assert(characters_cropped >= 0);
for(int i = 0; i < num_strings; i++)

if(strlen(strings[i]) >= characters_cropped)
strings[i] += characters_cropped;

else strings[i] += strlen(strings[i]);
}

Example file: wildptr-fixed.cpp

used for assert(condition), which checks that condition is true

used for strlen(char* str), which returns the length of a C string

Note that this is one less than the size of str as a char array:
For strlen, the terminal \0 character does not count.

8

Code that produces a memory leak

High-level languages operate with
automated garbage collection:
Memory is deallocated when there
are no more variables referring to it.

C/C++ memory management on the
heap must be done by hand. This
causes two possible bugs:

Memory leak: Memory should have
been deallocated, but was not.

Dangling pointers: Memory has
been deallocated, but it should not.

Example file: memleak.zip

float* crw::step(long size, float previous[])
{

// allocate the next configuration
float* config = new float[size]();

// first, let the chain contract:
// each element is attracted
// by its neighbours
for(long i = 0; i < size; i++)

config[i] = 0.5*previous[i]
+ 0.25*previous[(i-1) % size]
+ 0.25*previous[(i+1) % size];

// actual random walk step
stochastic_unit_step(size, config);

// shift such that the average is zero
shift_centre_to_origin(size, config);

return config;
}

9

Code that produces a memory leak

float* crw::step(long size, float previous[])
{

// allocate the next configuration
float* config = new float[size]();

// first, let the chain contract:
// each element is attracted
// by its neighbours
for(long i = 0; i < size; i++)

config[i] = 0.5*previous[i]
+ 0.25*previous[(i-1) % size]
+ 0.25*previous[(i+1) % size];

// actual random walk step
stochastic_unit_step(size, config);

// shift such that the average is zero
shift_centre_to_origin(size, config);

return config;
}

Example file: memleak.zip

int main(int argc, char** argv) {
[...]
// configuration: an array of float numbers
float* present_configuration

= new float[size]();
[...]

for(long i = 0; i < steps; i++) {
[...]
// do the random walk step
present_configuration

= crw::step(size,
present_configuration);

float present_elongation
= crw::elongation(size,

present_configuration);
[...]

}
delete[] present_configuration;

}

10

How should the “memleak” code be fixed?

There are a few techniques in C++ that help us write safer code with explicit
memory management, still done on the heap but less prone to pitfalls.

The key concept for safe manual memory management is ownership of a data
item, i.e., deciding what entity/part of the code has responsibility for managing
its allocation and deallocation safely. The entity holding ownership is typically
an object – so we will first need to discuss how OOP is done in C++.

We know that there is a memory leak.
Lucky situation: We also know where in the code it comes from.

Discussion:
– What approaches can we try in general, when we have

detected a memory leak? (Brainstorm a list of ideas.)
– Do they look promising as solutions for the present case?

INF205 19th February 2024

Digitalisering på Ås

Institutt for datavitskap

2 C++ basics

2.1 Features of C++
2.2 Pointers and arrays
2.3 Pass by value/reference
2.4 Memory allocation
2.5 Immutability and constants

book Section 1.6

12

The keywords const, constexpr, and auto

const: Used to declare an immutable variable
constexpr: Immutable and, additionally, can be evaluated at compile time

Con.1: By default, make objects immutable
“make objects non-const only when there is a need to change their value”

Con.4: Use const to define objects with values that do not change
Con.5: Use constexpr for values that can be computed at compile time

auto: Leave it to the compiler to determine the type

This requires an initialization. for (auto i = 0; i < 26; i++)
{
 auto c = 'a';
 c += i;
 cout << c;
}

Remark:

typeid(x).name() can
be used to output the
type assigned to x.

should
become int

should
become char

constexpr int space_dimension = 3; int n = 0; cin >> n; const int num_coords = n*space_dimension;

13

“const” parameters of a function

If we pass an argument by reference but
do not intend to modify it, the parameter
should be declared as const. Such as:

void do_something(const int N);
void do_something(const int& N);
void do_something(const int* const x);
void do_something(const int x[]);

Const variables may only be passed by
reference if the parameter is also const.

int second_of(int N, int* x) {
int largest = x[0];

 int second_largest
= std::numeric_limits<int>::min();

for(int i = 1; i < N; i++)
if(x[i] > largest) {

second_largest = largest;
largest = x[i];

}
else if(x[i] > second_largest)

second_largest = x[i];
return second_largest;

}

int main() {
 int fixed_array_size = 5;
 const int x[fixed_array_size] = {4, 0, 6, 5, 2};
 int t = second_of(fixed_array_size, x);
}

1. What is the code supposed to do?

2. Why does it not compile?

3. What should be changed?

4. What more const/-expr can we add?

14

Making proper use of const and constexpr

1. Variables are declared as const if we do
not plan to modify them after initialization.
If their value can be determined at compile
time, we can even use “constexpr”.

2. We declare pointers to const (of type T)
as const T*. (References as const T&.)

3. Pointers that are constant (i.e., have as
value an address that cannot be changed)
are of the type T* const. This can can be
combined with the above: const T* const.

int second_of(const int N, const int* const x) {
int largest = x[0];

 int second_largest
= std::numeric_limits<int>::min();

for(int i = 1; i < N; i++)
if(x[i] > largest) {

second_largest = largest;
largest = x[i];

}
else if(x[i] > second_largest)

second_largest = x[i];
return second_largest;

}

int main() {
 constexpr int fixed_array_size = 5;
 constexpr int x[fixed_array_size] = {4, 0, 6, 5, 2};
 const int t = second_of(fixed_array_size, x);
}

const-array.cpp – mistake fixed as follows:

Solution: If x[] in main() is a const int
array, or even “constexpr” (which is even
stronger than “const”), we must make the
x parameter in second_of() const int*.

All other changes are nice, but optional.

15

“const”, pass by reference, and const pointers

1) If you can pass by value, that is always to be preferred!
2) If you pass an argument by reference, the compiler assumes that the

function will modify it. Write “const” whenever that’s not the case.

An array is a pointer. Therefore it is impossible to pass an array by value. If you
don’t intend the function to write to the array, it should be a const parameter.

Pay attention to C++ syntax for combining pointers with “const”. Illustration:

int v = 3;
const int x[3] = {1, v, v*v}; // x is an array of constant integers
const int* y = &x[1]; // y is a pointer to a constant integer
int* const pv = &v; // pv will forever point to address of v
const int* const z = &x[2]; // z will forever point to address of x[2]

(*pv)++; // this is legal, we may change *pv, just not pv
y++; // this is legal, we may change y, just not *y

INF205 19th February 2024

Digitalisering på Ås

Institutt for datavitskap

Second worksheet

17

Second worksheet & tutorial statistics

On Fagpersonweb, there are now 37 registered course participants.
Out of these, 28 submitted the first worksheet.
Out of these, 6 presented solutions at the first tutorial session.

Based on these values, we now need eight problems per remaining worksheet.

Second worksheet schedule:

● Monday, 19th February: The worksheet is introduced at today’s lecture.
● Wednesday, 21st February: Tutorial session for working on the problems.
● Monday, 26th February: Assigning presentation slots.

● It looks like the booking system works, we can continue to use it.
● Tuesday, 27th February: Submission deadline.
● Wednesday, 28th February: Presentation of solutions at the tutorial.

INF205 19th February 2024

Digitalisering på Ås

Institutt for datavitskap

2 C++ basics

2.1 Features of C++
2.2 Pointers and arrays
2.3 Pass by value/reference
2.4 Memory allocation
2.5 Immutability and constants
2.6 Working with libraries

book Chapter 8

19

Standard libraries (and other common libraries)

In programming with C/C++ libraries, we have already seen:
– How to work with the C standard library, e.g., …
– … with the C++ standard library, e.g., …

1. What library includes were we using in today’s examples? What for?

 … (discuss)

2. What other C/C++ libraries have you been using? Do you recommend them?

… (discuss)

20

Standard libraries (and other common libraries)

In programming with C/C++ libraries, we have already seen:
– How to work with the C standard library, e.g., <cassert>, <cstring>, …
– … with the C++ standard library, e.g., <iostream>, <string>, …

Technically, libraries are pre-compiled object code that can be reused.

The library needs to be accessed at three stages:

– At compile time, we need to include the library headers.
• The complete source code for the libraries is unnecessary.
• It is even possible for the library to be coded in another language.

– During linking, the object code is dynamically linked against the library.
• At this stage, the library “static object” (*.so file) is needed.
• The executable does not contain the library’s object code!

– At execution time, the executable and the library are loaded jointly.
• If the library’s static object code is gone now, the code will not run!

21

C++ standard template library

The standard template library (STL) provides typical container data structures.
They are templates: They can contain any type of fundamental data items or
objects as their elements. The element type is specified in angular brackets.

// declare a list of int values
std::list<int> my_list();

// declare a list of std::string objects
std::list<std::string> my_list();

– vector<T> is a dynamic array for type T elements, similar to Python lists.
– deque<T> (“double ended queue”): Dynamic array with capacity both ends.

– forward_list<T> is a singly linked list data structure for type T.
– list<T> is a doubly linked list data structure for type T.

– set<T> is a container where each key (element) occurs only (at most) once.
– map<T, V> contains key-value pairs, which each key occurring at most once.
– multimap<T, V> contains key-value pairs; keys may occur multiple times.

– array<T, n> is a static array for type T, with array size n, similar to T[] arrays.

22

STL vector: Dynamic array in C++

A dynamic array can be declared (with “#include <vector>”) as an object of the
parameterized class vector<T>, e.g., “vector<int> data = {1, 2, 3, 4};”.

1

data[0]

freefree

4

data[1] data[2] data[3]

1 1 1

Functionalities of the STL
vector include explicit
addressing with “[index]”
notation, and many more.

6

capacity is 6

The standard template library (STL) provides typical container data structures.
They are templates: They can contain any type of fundamental data items or
objects as their elements. The element type is specified in angular brackets.

23

STL, object orientation, containers, and templates

It is good style to use the STL containers (vectors, lists, etc.).
They are implemented to deal with memory safely.

We will look more into them, and how to build such data structures
ourselves, once all the required concepts have been introduced.

– vector<T> is a dynamic array for type T elements, similar to Python lists.
– deque<T> (“double ended queue”): Dynamic array with capacity both ends.

– forward_list<T> is a singly linked list data structure for type T.
– list<T> is a doubly linked list data structure for type T.

– set<T> is a container where each key (element) occurs only (at most) once.
– map<T, V> contains key-value pairs, which each key occurring at most once.
– multimap<T, V> contains key-value pairs; keys may occur multiple times.

– array<T, n> is a static array for type T, with array size n, similar to T[] arrays.

24

Dynamic (shared) library use: Example

As an example, let us compile and run a code using Magick++ (ImageMagick).

https://imagemagick.org/Magick++/index.html
https://imagemagick.org/

25

Dynamic (shared) library use: Example

1Magick++ API documentation: https://imagemagick.org/Magick++/Documentation.html
2Magick++ Tutorial: https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

The convert-to-bmp code uses the Magick++ API of ImageMagick.1, 2

int main(int argc, char** argv)
{
 // charmap input
 std::ifstream pixistrm(argv[1]);
 diskgraphics::Charmap cm;
 pixistrm >> cm;
 pixistrm.close();

 // image object setup
 Magick::InitializeMagick(*argv);
 Magick::Image img(Magick::Geometry(cm.get_sizex(), cm.get_sizey()), "white");
 img.magick("BMP");
 img.monochrome();
 img.type(Magick::BilevelType);

 // pixel-by-pixel transfer of content
 for(int x = 0; x < cm.get_sizex(); x++)
 for(int y = 0; y < cm.get_sizey(); y++)
 img.pixelColor(x, y, Magick::Color(cm.get_pixel(x, y) == 0? "black": "white"));

 // output in BMP format using one bit per pixel
 img.quantize(2);
 img.write(argv[2]);
}

read a “Charmap” object from a pixel
graphics file, using an ad-hoc format

ImageMagick can deal with
many file formats; we need
an uncompressed pixel
graphics format such as BMP

copy colour value of pixels

with quantize(2) we get one bit per pixel

#include <Magick++.h>

https://imagemagick.org/Magick++/Documentation.html
https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

2619th February 2024INF205

Dynamic (shared) library use: Example

1Magick++ API documentation: https://imagemagick.org/Magick++/Documentation.html
2Magick++ Tutorial: https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

The convert-to-bmp code uses the Magick++ API of ImageMagick.1, 2

#include <Magick++.h>

How does the compiler know
where to look for this file?

https://imagemagick.org/Magick++/Documentation.html
https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

2719th February 2024INF205

Compiling and linking with libraries

1Magick++ API documentation: https://imagemagick.org/Magick++/Documentation.html
2Magick++ Tutorial: https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

The convert-to-bmp code uses the Magick++ API of ImageMagick.1, 2

#include <Magick++.h>

For this particular library, there is a tool that helps call g++ with the right flags:

How does the compiler know
where to look for this file?

More typically, you need to provide this information to the compiler by hand.

g++ -c -std=c++17 -o <name>.o <name>.cpp `Magick++-config --cppflags`

-fopenmp -DMAGICKCORE_HDRI_ENABLE=1
-DMAGICKCORE_QUANTUM_DEPTH=16 -I/usr/local/include/ImageMagick-7

g++ -std=c++17 -o <name> *.o `Magick++-config --libs`

-L/usr/local/lib -lMagick++-7.Q16HDRI -lMagickWand-7.Q16HDRI -lMagickCore-7.Q16HDRI

https://imagemagick.org/Magick++/Documentation.html
https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

2819th February 2024INF205

Creating a dynamic (shared) library

A shared object file can be created from an object file using g++ -shared:

g++ -c -o first.o first.cpp
g++ -c -o second.o second.cpp
g++ -shared -o libname.so first.o second.o

The library header location can be passed to g++ at compile time with -I…,
and the shared object is found by the linker with the -L and -l options.

this is a capital i,
not a lower-case L

this time it is a
lower-case L

But the library also needs to be found at execution time.
For that to work, it must be in the appropriate path, or
one of the environment variables for library paths must
be set to include the location of the shared object.

this can be
$LD_LIBRARY_PATH

INF205 19th February 2024

Digitalisering på Ås

Institutt for datavitskap

Conclusion

3019th February 2024INF205

Weekly glossary concepts

What are essential concepts from this lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???

???

???

wild pointer

constant
expression

dynamic
library

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 19th February 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

2 The C++ programming language

2.1 Features of C++
2.2 Pointers and arrays
2.3 Pass by value or reference

2.4 Memory allocation
2.5 Immutability and constants
2.6 Working with libraries

