
INF205 18th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures and libraries

3.1 Co-design data & code 3.4 Containers
3.2 Shared libraries 3.5 Linked data
3.3 CMake 3.6 Graphs and trees

218th February 2025INF205

Gauss circle problem

(Diagram under CC0 license, Wikipedia.)

When checking the submitted codes, I also
measured their performance (for r = 7,777
and where possible r = 7,777,777).

For equal conditions for all, I used the same
optimization flag -O2, in all cases, and ran
them on the same machine (present laptop).

Simple standard solution, did the
r = 7,777 case in about 240 ms.

O(r²) scaling, i.e., quadratic time.

Graded as
8½ points
out of 10.

int main(int argc, char** argv)
{

int r = std::atoi(argv[1]);
long N = 0;

for(int x = -r; x <= r; x++)
for(int y = -r; y <= r; y++)

if(x*x + y*y <= r*r) N++;
std::cout << N << "\n";

}

318th February 2025INF205

Gauss circle problem

(Diagram under CC0 license, Wikipedia.)

When checking the submitted codes, I also
measured their performance (for r = 7,777
and where possible r = 7,777,777).

For equal conditions for all, I used the same
optimization flag -O2, in all cases, and ran
them on the same machine (present laptop).

This variant of the first solution
does r = 7,777 in about 60 ms.

O(r²) scaling, i.e., quadratic time.

By exploiting the symmetry and only
counting the points in one quadrant, a
speedup of about 4 is reached.

Speedup = Slow / Fast code runtime.

This was also a frequent solution and
was graded with 9 points out of 10.

418th February 2025INF205

Gauss circle problem

The standard “simple and efficient”
solution, which was submitted by several
people as well, counts points line by line.

In each line, the number of points is
determined from floor(sqrt(r² – y²)).

This code solves the problem
in linear time, i.e., O(r).

About 50 ms for r = 7,777,777.

int main(int argc, char** argv)
{

long r = std::atoi(argv[1]);

long long N = 2*r + 1;
for(long y = 1; y <= r; y++)
{

long Nx = std::floor(std::sqrt(r*r - y*y));
N += 4*Nx + 2;

}
std::cout << N << "\n";

}

5

Gauss circle problem

Generally, it is most efficient if we can
rely on operations that are directly
implemented on hardware, in the arith-
metic-logical unit (ALU) of the CPU.

So the code will become even faster if
we can avoid computing the square root.

Idea by Marius K. Huseby:

Walk along the contour, only compare
the values x² + y² to r², no sqrt() call. This code solves the problem

in linear time, i.e., O(r).

About 15 ms for r = 7,777,777.

6

Gauss circle problem: The winning algorithm

Generally, it is most efficient if we can
rely on operations that are directly
implemented on hardware, in the arith-
metic-logical unit (ALU) of the CPU.

So the code will become even faster if
we can avoid computing the square root.

Idea by Marius K. Huseby:

Walk along the contour, only compare
the values x² + y² to r², no sqrt() call.

Fredrik G. Haugen introduced one more
symmetry argument over the diagonal.

This code solves the problem
in linear time, i.e., O(r).

About 11 ms for r = 7,777,777.

718th February 2025INF205

Class hierarchy implementation in C++

Classes can stand in a hierarchical relationship: A more general superclass
and its more specific subclass (also, “derived class” or “child”).

An object of the subclass then (automatically) is also an object of the
superclass; it has all the members defined in its class definition, but also
inherits the members defined for the superclass, to which it also belongs.

LiteratureIndex

BookIndex JournalArticleIndex

class LiteratureIndex {
public:
 virtual int next_page();
 …
private:
 int year = 0;
 …
};

class JournalArticleIndex: public LiteratureIndex {
public:
 int next_page();
 …
private:
 int volume = 0;
 …
};

JournalArticleIndex has the property
volume, but it also inherits the
property year.

It can override the next_page
method definition from its
superclass, because it is virtual.

Example file: literature-indices.zip

818th February 2025INF205

Abstract classes, concrete subclasses

The code sequences-int.zip has an abstract class at the top of a class hierarchy.

Such a class has a pure virtual method that is only declared, but not defined.
The declaration uses the construction “virtual … method(…) = 0;”.

Sequence

SinglyLinkedListDynamicArray DoublyLinkedList

 class Sequence
 {
 public:
 virtual bool empty() const = 0; // whether sequence is empty
 virtual size_t size() const = 0; // size (number of items)

 virtual int& front() = 0; // return reference to first item
 virtual int& back() = 0; // return reference to final item

 virtual int& at(int i) = 0; // reference to item at index i

 ...
 };

A class is concrete (i.e., not
abstract) if it does not have
any pure virtual methods.

If it has an abstract
superclass, it must override
(define) all its pure virtual
method declarations.

9

Core guidelines

An abstract class might contain “normal” methods in addition to its pure
virtual method(s). If it only has pure virtual methods, it is a pure abstract class.
Such classes are used to specify interfaces.

– C.120: Use class hierarchies to represent concepts with inherent

hierarchical structure (only).
– C.121: If a base class is used as an interface, make it a pure abstract

class.
– C.122: Use abstract classes as interfaces when complete separation of

interface and implementation is needed.

Concerning virtual methods and overriding:

– C.128: Virtual functions should specify exactly one of virtual, override,

or final.

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

INF205 18th February 2025

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.1 Co-design data and code
3.2 Shared libraries

11

Designing classes: Entity-relationship diagrams

particular: object relationship property

universal: class relation attribute

entity

entity type relationship type

(sometimes: attribute)

(sometimes: attribute type)
individual

concept (in OWL: ObjectProperty) (in OWL: DatatypeProperty)

More on entity-relationship diagrams:
– Silberschatz et al., Database System Concepts, Chapter 6
– https://en.wikipedia.org/wiki/Entity-relationship_model

This was also an entity-relationship diagram:

 City

ID

name

population
 Person

ID

name

street

city Employee

salary

 Student

tot_credits

 Instructor

rank

 Secretary

hours_per_week

 Country

ID

name

city_country
isCityInCountry isCountryOfCity

“every City is in such a relationship”

“it is an N-to-1 relation from Cities to Countries”

https://en.wikipedia.org/wiki/Entity-relationship_model

12

Implement relations using non-owning pointers

By storing a pointer to object B as a property of object A, we can encode the
relationship between A and B, so that methods from A can access B.

This can go both ways, if needed. Then B also has a pointer to A as a property:

Example file: city-country.zip

 class City
 {
 public:
 City(string in_name, int in_population, Country* in_country);
 …

 private:
 long ID;
 string name;
 long population;

 Country* country;
 };

 class Country
 {
 public:
 Country(string in_name);

 void add_city(City* c);
 ...

 private:
 int ID;
 string name;
 vector<City*> cities;
 };

13

Difference between E-R use in databases and OOP

 emne

emnekode

emnetittel

blokk

studiepoeng

 tilsett

tilsett_id

etternamn

førenamn

epost

stillingsnemning

institutt

 emneansvar

studieår tilsett_idemnekode

In a database schema, objects are identified through primary keys (IDs), and
their relationship to others are give by foreign keys, i.e., other objects’ IDs.
For example, above, an “emneansvar” entry contains a “tilsett_id” number.

In OOP, we can do this in exactly the same way, with a registry of objects, for
example using a std::map from the STL (see later). But the standard way of
doing this is by instead including a pointer to the object as a property.

14

 Country

Population of the country is the sum

of cities’ populations. (Requires up-

date when changing city population.)

Each city needs a country. (If deallo-

cated, move cities to “null country”.)

CRC cards: Class – responsibilities – collaborations

 Country

ID

name

population

register a city

deallocate the country

When discussing formal analysis of procedural programming codes, we
encountered invariants for a loop. These must hold at every iteration.

Classes in object oriented programming have a much more flexible control
flow, as their methods can be called at any time and in any order. It can help to
make the invariants explicit during design, e.g., using CRC cards as a tool.

City

responsibilities collaborations (backside can be used for invariants)

class

INF205 18th February 2025

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.1 Co-design data and code
3.2 Shared libraries

16

Standard libraries (and other common libraries)

In programming with C/C++ libraries, we have already seen:
– How to work with the C standard library, e.g., …
– … with the C++ standard library, e.g., …

1. What library includes were we using in today’s examples? What for?

 … (discuss)

2. What other C/C++ libraries have you been using? Do you recommend them?

… (discuss)

17

Standard libraries (and other common libraries)

In programming with C/C++ libraries, we have already seen:
– How to work with the C standard library, e.g., <cassert>, <cstring>, …
– … with the C++ standard library, e.g., <iostream>, <string>, …

Technically, libraries are pre-compiled object code that can be reused.

The library needs to be accessed at three stages:

– At compile time, we need to include the library headers.
• The complete source code for the libraries is unnecessary.
• It is even possible for the library to be coded in another language.

– During linking, the object code is dynamically linked against the library.
• At this stage, the library “static object” (*.so file) is needed.
• The executable does not contain the library’s object code!

– At execution time, the executable and the library are loaded jointly.
• If the library’s static object code is gone now, the code will not run!

18

C++ standard template library

The standard template library (STL) provides typical container data structures.
They are templates: They can contain any type of fundamental data items or
objects as their elements. The element type is specified in angular brackets.

// declare a list of int values
std::list<int> my_list();

// declare a list of std::string objects
std::list<std::string> my_list();

– vector<T> is a dynamic array for type T elements, similar to Python lists.
– deque<T> (“double ended queue”): Dynamic array with capacity both ends.

– forward_list<T> is a singly linked list data structure for type T.
– list<T> is a doubly linked list data structure for type T.

– set<T> is a container where each key (element) occurs only (at most) once.
– map<T, V> contains key-value pairs, which each key occurring at most once.
– multimap<T, V> contains key-value pairs; keys may occur multiple times.

– array<T, n> is a static array for type T, with array size n, similar to T[] arrays.

19

STL vector: Dynamic array in C++

A dynamic array can be declared (with “#include <vector>”) as an object of the
parameterized class vector<T>, e.g., “vector<int> data = {1, 2, 3, 4};”.

1

data[0]

freefree

4

data[1] data[2] data[3]

1 1 1

Functionalities of the STL
vector include explicit
addressing with “[index]”
notation, and many more.

6

capacity is 6

The standard template library (STL) provides typical container data structures.
They are templates: They can contain any type of fundamental data items or
objects as their elements. The element type is specified in angular brackets.

20

STL, object orientation, containers, and templates

It is good style to use the STL containers (vectors, lists, etc.).
They are implemented to deal with memory safely.

We will look more into them, and how to build such data structures
ourselves, once all the required concepts have been introduced.

– vector<T> is a dynamic array for type T elements, similar to Python lists.
– deque<T> (“double ended queue”): Dynamic array with capacity both ends.

– forward_list<T> is a singly linked list data structure for type T.
– list<T> is a doubly linked list data structure for type T.

– set<T> is a container where each key (element) occurs only (at most) once.
– map<T, V> contains key-value pairs, which each key occurring at most once.
– multimap<T, V> contains key-value pairs; keys may occur multiple times.

– array<T, n> is a static array for type T, with array size n, similar to T[] arrays.

21

Dynamic (shared) library use: Example

1Magick++ API documentation: https://imagemagick.org/Magick++/Documentation.html
2Magick++ Tutorial: https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

The convert-to-bmp code uses the Magick++ API of ImageMagick.1, 2

int main(int argc, char** argv)
{
 // charmap input
 std::ifstream pixistrm(argv[1]);
 diskgraphics::Charmap cm;
 pixistrm >> cm;
 pixistrm.close();

 // image object setup
 Magick::InitializeMagick(*argv);
 Magick::Image img(Magick::Geometry(cm.get_sizex(), cm.get_sizey()), "white");
 img.magick("BMP");
 img.monochrome();
 img.type(Magick::BilevelType);

 // pixel-by-pixel transfer of content
 for(int x = 0; x < cm.get_sizex(); x++)
 for(int y = 0; y < cm.get_sizey(); y++)
 img.pixelColor(x, y, Magick::Color(cm.get_pixel(x, y) == 0? "black": "white"));

 // output in BMP format using one bit per pixel
 img.quantize(2);
 img.write(argv[2]);
}

read a “Charmap” object from a pixel
graphics file, using an ad-hoc format

ImageMagick can deal with
many file formats; we need
an uncompressed pixel
graphics format such as BMP

copy colour value of pixels

with quantize(2) we get one bit per pixel

#include <Magick++.h>

https://imagemagick.org/Magick++/Documentation.html
https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

22

Dynamic (shared) library use: Example

1Magick++ API documentation: https://imagemagick.org/Magick++/Documentation.html
2Magick++ Tutorial: https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

The convert-to-bmp code uses the Magick++ API of ImageMagick.1, 2

#include <Magick++.h>

How does the compiler know
where to look for this file?

https://imagemagick.org/Magick++/Documentation.html
https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

23

Compiling and linking with libraries

1Magick++ API documentation: https://imagemagick.org/Magick++/Documentation.html
2Magick++ Tutorial: https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

The convert-to-bmp code uses the Magick++ API of ImageMagick.1, 2

#include <Magick++.h>

For this particular library, there is a tool that helps call g++ with the right flags:

How does the compiler know
where to look for this file?

More typically, you need to provide this information to the compiler by hand.

g++ -c -std=c++17 -o <name>.o <name>.cpp `Magick++-config --cppflags`

-fopenmp -DMAGICKCORE_HDRI_ENABLE=1
-DMAGICKCORE_QUANTUM_DEPTH=16 -I/usr/local/include/ImageMagick-7

g++ -std=c++17 -o <name> *.o `Magick++-config --libs`

-L/usr/local/lib -lMagick++-7.Q16HDRI -lMagickWand-7.Q16HDRI -lMagickCore-7.Q16HDRI

https://imagemagick.org/Magick++/Documentation.html
https://www.imagemagick.org/Magick++/tutorial/Magick++_tutorial.pdf

24

Creating a dynamic (shared) library

A shared object file can be created from an object file using g++ -shared:

g++ -c -o first.o first.cpp
g++ -c -o second.o second.cpp
g++ -shared -o libname.so first.o second.o

The library header location can be passed to g++ at compile time with -I…,
and the shared object is found by the linker with the -L and -l options.

this is a capital i,
not a lower-case L

this time it is a
lower-case L

But the library also needs to be found at execution time.
For that to work, it must be in the appropriate path, or
one of the environment variables for library paths must
be set to include the location of the shared object.

this can be
$LD_LIBRARY_PATH

INF205 18th February 2025

Digitalisering på Ås

Institutt for datavitskap

Looking into the
implementation of a linked list

26

Linked lists (singly linked)

34

item next

1

item next

7

item next

head tail

nullptr

12

item next

Linked lists are dynamic data structures. Their elements are not contiguous in
memory. Therefore, pointer arithmetics and increments (p++) cannot be used.
Instead, the linked list consists of nodes.

Example task: Insert 12 after node x, to which we already have a reference.

27

Discussion: Deleting or copying a linked list

Say we have a linked-list object x, consisting of the fields “head” and “tail”.

– The object runs out of scope and is getting deallocated. We did not
define a constructor, so the default constructor is used.

• What will this do? Is it what we want?

– We assign the value of x to another list object y, writing “y = x”. By de-
fault, this means that the property values “head” and “tail” are copied.

• Is this reasonable? What could the user be expecting instead?

Or: We have a singly-linked-list node object, consisting of “item” and “next”.

– What will happen upon deallocation by default? What should happen?
– What will happen upon copying by default? What should happen?

28

Example implementation

Singly linked list of integers as in the sequences-int.zip example:

Interface (abstract class) from Sequence:

– bool empty() const;
– size_t size() const;

– int& front();
– int& back();
– int& at(int i);

– void push_front(const int& in);
– void push_back(const int& in);
– void push(const int& in);
– void insert_at(int idx, const int& in);

– void pop_front();
– void pop_back();
– void pop(const int& in);
– void erase_at(int idx);
– void clear();

class SinglyLinkedList: public Sequence {
public: … // implement all the interface from Sequence
 ~SinglyLinkedList() { this->clear(); }

private:
 SinglyLinkedListNode* head = nullptr;
 SinglyLinkedListNode* tail = nullptr;
};

class SinglyLinkedListNode {
public:
 int& get_item() { return this->item; }
 SinglyLinkedListNode* get_next() const { return this->next; }
 void set_item(int in_item) { this->item = in_item; }

private:
 int item = 0;
 SinglyLinkedListNode* next = nullptr;
 void set_next(SinglyLinkedListNode* in) { this->next = in; }
 friend class SinglyLinkedList;
};

INF205 18th February 2025

Digitalisering på Ås

Institutt for datavitskap

Remark on templates

3018th February 2025INF205

Templates: Parameterized classes

We have already seen the STL templates: The same container implementation
can be used for different types of contained objects, such as list<float> and
list<double>. We can define our own class templates in this way:

template<typename T> class SinglyLinkedListNode
{
public:
 T& get_item() { return this->item; }
 SinglyLinkedListNode<T>* get_next() const { return this->next; }
 void set_item(T in_item) { this->item = in_item; }

private:
 T item;
 SinglyLinkedListNode<T>* next = nullptr;
 void set_next(SinglyLinkedListNode<T>* in_next) { this->next = in_next; }
};

attention with initializations

attention with split between
header and object file; think about

“what the compiler will do”

While there is only one source code for each template, object code is normally
generated separately for each concrete version of it. (But not for the template!)

Example file: list-template.zip

3118th February 2025INF205

Templates for functions and methods

The same sort of syntax applies for parameterized function and method
declarations and definitions. This includes cases with multiple parameters.

template<typename T>
 void SinglyLinkedList<T>::push_front(
 const T& pushed_item
) {
 SinglyLinkedListNode<T>* new_node

 = new SinglyLinkedListNode<T>;
 new_node->set_item(pushed_item);

 if(this->empty()) this->tail = new_node;
 else new_node->set_next(this->head);
 this->head = new_node;
}

template<typename SeqnT, typename ElmnT>
 void test_sequence(
 SeqnT* sqn, int n, int m,
 ElmnT a, ElmnT b, ostream* os
) {
 …
}

template<typename SeqnT, typename ElmnT>
 float test_with_time_measurement(
 SeqnT* sqn, int iterations, ElmnT a, ElmnT b
) {
 int sequence_length = 1000001;
 int deletions = 10;
 test_sequence(sqn, 100000, 10, a, b, &cout);
}

Example file: list-template.zip

3218th February 2025INF205

Templates: Case distinctions

The standard library header <type_traits> includes parameterized flags that
can be used to make case distinctions, e.g.,

– is_arithmetic<T>::value, is_signed<T>::value, etc.;
– is_pointer<T>::value, is_class<T>::value, is_array<T>::value, etc.;
– is_same<T, S>::value, to check whether T and S are the same type.

In list-template, solutions for initializing the property “T item” would include:

T item = T();

template<typename T>
 const T initial_value = T();
…
T item = initial_value<T>;

 SinglyLinkedListNode<T>() {
 if constexpr(is_arithmetic<T>::value) this->item = 3;
 else if constexpr(is_pointer<T>::value) this->item == nullptr;
 else if constexpr(is_same<T, string>::value) this->item = "uninitialized";
 else this->item = T();
 }

Only with the solution on the right we can make more high-level design
distinctions depending on the nature of the type T used for parameterizing.

INF205 18th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures and libraries

3.1 Co-design data & code 3.4 Containers
3.2 Shared libraries 3.5 Linked data
3.3 CMake 3.6 Graphs and trees

