
INF205 25th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures and libraries

3.1 Co-design data & code 3.4 Containers
3.2 Shared libraries 3.5 Linked data
3.3 CMake 3.6 Graphs and trees

225th February 2025INF205

Creating a dynamic (shared) library

A shared object file can be created from an object file using g++ -shared:

g++ -c -fPIC -o first.o first.cpp
g++ -c -fPIC -o second.o second.cpp
g++ -fPIC -shared -o libname.so first.o second.o

The library header location can be passed to g++ at compile time with -I…,
and the shared object is found by the linker with the -L and -l options.

this is a capital i,
not a lower-case L

this time it is a
lower-case L

But the library also needs to be found at execution time.
For that to work, it must be in the appropriate path, or
one of the environment variables for library paths must
be set to include the location of the shared object.

this can be
$LD_LIBRARY_PATH

needed on some systems, when reusing certain libraries,
to enforce “position-independent code” (PIC) object files

Example: shared-library.zip

INF205 25th February 2025

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.3 CMake
3.4 Containers

425th February 2025INF205

Generating makefiles using CMake

CMake can be helpful if your project has a complex system of dependencies,
or compile-time case distinctions are needed beyond what you can implement
in a simple way using GNU make; e.g., embedded system cross-compiling.

CMake is used by many complex C/C++ projects that require developers or
users to compile code on their systems, which may be very diverse. Typically:

cmake . && make && sudo make install

There, CMake generates the Makefile that is then used by GNU make.
We have done this before when we looked into the C++ interface to ROS.

Instructions for CMake are communicated through a file called CMakeLists.txt.

– CMake documentation: https://cmake.org/cmake/help/latest/

– CMake tutorial: https://cmake.org/cmake/help/latest/guide/tutorial/

https://cmake.org/cmake/help/latest/
https://cmake.org/cmake/help/latest/guide/tutorial/

525th February 2025INF205

Generating makefiles using CMake

CMake project example (cmake-dirgraph.zip):

– Working folder (unpack into that folder)
– Code in subdirectory ./src.
– Data in subdirectory ./data.
– CMakeLists.txt (see commands1) in the

main folder and in the ./src folder.
– Calling “cmake .” in the main working

folder generates Makefiles in both folders.

1See: https://cmake.org/cmake/help/latest/manual/cmake-commands.7.html

set(EXECUTABLE_OUTPUT_PATH ../bin)
add_executable(dirgraph graph.cpp query.cpp run-graph.cpp)

cmake_minimum_required(
 VERSION 3.17
)
project(
 dirgraph
 VERSION 1.0.0
 LANGUAGES CXX
)

set(CMAKE_CXX_STANDARD 20)
add_subdirectory(src)

Now make will automatically call g++ with the right options and flags.

src/CMakeLists.txt

./CMakeLists.txt

https://cmake.org/cmake/help/latest/manual/cmake-commands.7.html

6

CMake support for unit tests

Unit tests are generally a helpful debugging tool in complex development
projects. Here they can also help the user verify that everything worked well.

enable_testing()
add_test(
 NAME example_graph
 COMMAND dirgraph kb.dat query.dat
 WORKING_DIRECTORY data
)
set_tests_properties(
 example_graph
 PROPERTIES
 PASS_REGULAR_EXPRESSION "<INF200 2022H>[\t\r\n]*<Rune Grønnevik>"
 PASS_REGULAR_EXPRESSION "<INF205 2023H>[\t\r\n]*<Trine Næss Henriksen>"
 PASS_REGULAR_EXPRESSION "<KJM230 2023V>[\t\r\n]*<Heidi Rudi>"
)

https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html#test-properties

CMakeLists.txt (cmake-dirgraph.zip)

^ Matches at beginning of input
. Matches any single character
[Xy2] Any of the characters X, y, or 2
[^vV] Any character other than v or V
[C-F] Any of the characters C, D, E, or F
* Preceding pattern occurs >= 0 times
+ Preceding pattern occurs >= 1 time
? Optional (occurs 0 or 1 times)
| Disjunction ("or")

https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html#test-properties

7

CMake GUI

Graphical interface to CMake: cmake-gui

INF205 25th February 2025

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.3 CMake
3.4 Containers

9

Rule of three

Container objects take ownership, i.e., lifetime and deallocation responsibility.
The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

“Rule of three:” For a container, implement at least
(1) destructor,
(2) copy constructor,
(3) copy assignment operator.

At least implement (1) the destructor!
If (2) and (3) are not there, forbid copying.

Most often you will then also need
to implement (0) a constructor.

10

Rule of three: (1) Destructor

Example: Let us assume that class T
has one property for which it has
ownership, a pointer p to class S that
points to an array of 1000 S elements.

Container objects take ownership, i.e., lifetime and deallocation responsibility.
The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

class T
{
public:
 T() { this->p = new S[1000](); }
 ~T() { delete[] this->p; }
 …
private:
 S* p = nullptr;
 …
}

It is typical for the owned content, if
manual memory management needs
to be done, to be allocated in the
constructor, T::T() and/or T::T(…).

T tobject;
T* tpointer = new T;

11

Rule of three: (2) Copy constructor

The copy constructor T::T(const T& orig) is
called when the following two are done at
the same time: (1) allocation of an object,
so that a constructor needs to be called,
and its (2) initialization to the value of a
pre-existing object that continues to exist.

class T
{
public:
 T() { this->p = new S[1000](); }
 T(const T& original) {
 this->p = new S[1000]();
 std::copy(
 original.p, original.p+1000,
 this->p
);
 }
 …
}

// default constructor
T tfirst;
…
// copy constructor
T tsecond = tfirst;

void func(T param) { … }

int main() {
 T tobject;
 …
 // copy constructor
 func(tobject);
}

Examples for when the copy constructor is called:

after running the
copy constructor, the

same content must
exist in memory

twice!

std::copy can be used
for data that are

contiguous in memory

1. Create space for the duplicate.
2. Now write the duplicate into it.

12

Copying an object

Shallow copy:

Standard copying, such as if there is
no handwritten copy constructor or
copy assignment operator, will
simply copy the value of pointers,
not the content to which they point.

After shallow copying, the content will
exist once in memory. This can be
appropriate when the content is not
owned but just pointed at.

original copydata

Deep copy:

Standard copying, such as if there is
no handwritten copy constructor or
copy assignment operator, will
simply copy the value of pointers,
not the content to which they point.

After deep copying, content exists twice in
memory. Design following the concept of
a “container” that uniquely “owns” its
content requires deep copying.

original copydatadata

13

Fast copying (to implement deep copying)

Element-wise copying

for(int i = 0; i < num_copy; i++) target[i] = source[idx_start + i];

This is slow! Don’t do this for large numbers of elements adjacent in memory.
Also, note that Core Guidelines recommend “size_t” instead of int.

C-style fast copying (apply this only to a traditional C/C++ array)

 #include <cstring>
 …
 std::memcpy(target, source + idx_start, num_copy * sizeof(element_type));

Modern C++ style fast copying (can also be used for STL containers)

 #include <algorithm>
 …
 std::copy(source + idx_start, source + idx_start + num_copy, target);

Example: std-copy.cpp

14

Rule of three: (3) Copy assignment operator

The copy assignment operator technically
is an overloaded “=” operator:

class T
{
public:
 T() { this->p = new S[1000](); }
 T& operator=(const T& rhs) {
 if(&rhs == this) return *this;
 delete this->p;
 this->p = new S[1000];
 std::copy(
 rhs.p, rhs.p+1000, this->p
);
 return *this;
 }
 …
}

// default constructor
T tfirst, tsecond;
…
// copy assignment
tsecond = tfirst;

A copy assignment is
done whenever we copy
the value of one variable
to another, both existed
before, and both
continue to exist.

T& T::operator=(const T& rhs) { … }

Difference from the copy constructor:
– Object already exists, hence no initial

allocation of memory for content.
– But deallocate pre-existing content.

Note that a reference to *this
needs to be returned.

15

Copy assignment operator

The copy assignment operator technically
is an overloaded “=” operator:

class T
{
public:
 T() { this->p = new S[1000](); }
 T& operator=(const T& rhs) {
 if(&rhs == this) return *this;

 std::copy(
 rhs.p, rhs.p+1000, this->p
);
 return *this;
 }
 …
}

// default constructor
T tfirst, tsecond;
…
// copy assignment
tsecond = tfirst;

A copy assignment is
done whenever we copy
the value of one variable
to another, both existed
before, and both
continue to exist.

after running the
copy assignment, the

same content must
exist in memory

twice!

T& T::operator=(const T& rhs) { … }

Difference from the copy constructor:
– Object already exists, hence no initial

allocation of memory for content.
– But deallocate pre-existing content

if necessary.

1625th February 2025INF205

Rule of three and rule of five

Container objects take ownership, i.e., lifetime and deallocation responsibility.
The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

At least implement (1) the destructor!
If (2) and (3) are not there, forbid copying.

Most often you will then also need
to implement (0) a constructor.

“Rule of five:” Implement
(1) destructor,
(2) copy constructor,
(3) copy assignment operator,
(4) move constructor,
(5) move assignment operator.

“Rule of three:”
(1) destructor,
(2) copy constructor,
(3) copy assignment operator.

17

Rule of five: (4) Move constructor

The move constructor is called when the
content of an old object can be shifted to a
new object that is allocated and initialized
(e.g., before we deallocate the old object).

class T
{
public:
 T() { this->p = new S[1000](); }

 T(T&& old) {
 this->p = old.p;
 old.p = nullptr;
 }
 …

private:
 S* p …
}

T::T(T&& old) { … }

A shallow copy of the
pointer to the content is
good enough; after the
action, the content exists
in memory only once!

Attention: Right after the
move constructor for

“this”, the destructor of
“old” might be called.

Remove all pointers to
the content from old, so

that it does not get
deallocated!

T func(…) {
 T tfirst;
 …
 return tfirst;
 // the destructor will be called
}

int main() {
 // but before, call the move constructor
 T tsecond = std::move(func(…));
}

Typical use case: Efficient
handover of content

returned by a function.

1825th February 2025INF205

Move: Why can it be advantageous?

Copy constructor + destructor:

If there is no move constructor, or
the compiler does not enforce a
move, first all the content is copied
(deep copy); the old container is
probably deallocated right after.

This is an expensive operation whenever
there is a substantial amount of data. All
data are copied, unnecessarily, since at the
end they still exist only once in memory.

old newdatadata

Move constructor + destructor:

The move constructor is used to
make a new container own the data
without copying the data. A shallow
copy is made, and the data are
detached from the old container.

The shallow copy is an inexpensive
operation. If the data exist once in memory
both before the operation and after, why
copy them from one place to another?

old newdata

0
0
0
0

19

Rule of five: (5) Move assignment operator

The move assignment operator relates to the move constructor the same way
as the copy assignment operator relates to the copy constructor.

T func(…) {
 T tfirst;
 …
 return tfirst;
 // the destructor will be called
}

int main() {
 T tsecond;
 …
 // but before, call the move assignment operator
 tsecond = std::move(func(…));
}

T& T::operator=(T&& old) { … } old thisdatadata

old thisdata

old thisdata

0
0
0
0

constructor called

tsecond exists already

2025th February 2025INF205

Example: Copying vs. moving

See copying-and-moving.zip for an implementation and performance compa-
rison between the STL and self-implemented sequences with int elements.

Below: Copy and move assignment operators for the singly linked list.

// copy assignment: clear pre-existing content,
// then make a deep copy of original content

SinglyLinkedList& SinglyLinkedList::operator=(
 const SinglyLinkedList& right_hand_side
) {
 if(&right_hand_side == this) return *this;
 this->clear(); // remove pre-existing content

 for(
 auto n = right_hand_side.begin();
 n != nullptr;
 n = n->get_next()
) this->push_back(n->get_item());

 return *this;
}

// move assignment: clear pre-existing content,
// then shallow-copy pointers to moved content

SinglyLinkedList& SinglyLinkedList::operator=(
 SinglyLinkedList&& old
) {
 if(&right_hand_side == this) return *this;
 this->clear(); // remove pre-existing content

 // now proceed as for the move constructor
 this->head = old.head;
 this->tail = old.tail;
 old.head = nullptr;
 old.tail = nullptr;

 return *this;
}

INF205 25th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures and libraries

3.1 Co-design data & code 3.4 Containers
3.2 Shared libraries 3.5 Linked data
3.3 CMake 3.6 Graphs and trees

