Norges miljg- og

e
biovitenskapelige
M

universitet

INF205
Resource-efficient programming

3 Data structures and libraries

3.1 Co-design data & code 3.4 Containers
3.2 Shared libraries 3.5 Linked data
3.3 CMake 3.6 Graphs and trees

INF205 26" February 2025

Noregs milj@- og

U
M B I biovitskaplege

universitet

3 Data structures

3.5 Linked data structures
3.6 Graphs and trees

INF205 26" February 2025

r' J Norwegian University
- of Life Sciences

Linked lists (singly linked)

Linked lists are dynamic data structures. Their elements are not contiguous in
memory. Therefore, pointer arithmetics and increments (p++) cannot be used.
Instead, the linked list consists of nodes.

Example task: Insert 12 after node x, to which we already have a reference.

item next

item next

12

34
A item next

y item next ;

head tail | 7 —

INF205 26" February 2025 3

Linked lists (doubly linked)

— U
M

N —

Norwegian University
of Life Sciences

In a doubly linked list, each node also contains a reference (or pointer) to the
previous node. This facilitates traversal in both directions and inserting a new
data item before any given node (rather than only after it), all in constant time.

Singly linked lists require two variables per data item (item and next).
Doubly linked lists require three variables per data item (prev, item, and next).

prev item next

| 1

ST

INF205

prev item next
—
12
prev y item next ;
head tail - 7 —
26" February 2025

From singly to doubly linked

// add an item at the beginning of the list
void SinglyLinkedList::push_front(
const int& pushed_item
)
SinglyLinkedListNode* new_node
= new SinglyLinkedListNode;
new_node->set_item(pushed_item);

if(this->empty()) this->tail = new_node;
else
new_node->set_next(this->head);

For every link forward (next),
there is now also a link

this->head = new_node; backward (prev).

1
i 4 /
\\//: d /I/,
ea tai

INF205 26" February 2025

['m-

u
o

N —

Norwegian University
of Life Sciences

// add an item at the beginning of the list
void DoublyLinkedList::push_front(
const int& pushed_item

)

DoublyLinkedListNode* new_node
= new DoublyLinkedListNode;
new_node->set_item(pushed_item);

if(this->empty()) this->tail = new_node;
else{
new_node->set_next(this->head);
this->head->set_prev(new_node);

}
this->head = new_node;
}
P ,
pushed / N\ / \
nullptr| _jtem nullptr
\\/ Vi I

head

tail

Discussion: Deleting or copying a list

Say we have a linked-list object x, consisting of the fields “head” and “tail”.
— The object runs out of scope and is getting deallocated. We did not
define a constructor, so the default constructor is used.
* What will this do? Is it what we want?

— We assign the value of x to another list object y, writing "y = x”. By de-
fault, this means that the property values “head” and “tail” are copied.

* |s this reasonable? What could the user be expecting instead?

Or: We have a singly-linked-list node object, consisting of “item” and “next”.

— What will happen upon deallocation by default? What should happen?
— What will happen upon copying by default? What should happen?

Overview: Sequential data structures
copying-and-moving.zi
— Read/write access to a data item at position k YIRS I4p
* For adynamic array, O(1) time; fast access by pointer arithmetics
* Forasingly linked list, O(k) time, i.e., O(n) in the average/worst case
* For a doubly linked list, O(min(k, n - k)), which is still effectively O(n)

— Iterating over the data, i.e., proceeding from one item to the next one
* O(1) both for dynamic arrays and for linked lists

— Deleting a data item at position k
* For a dynamic array, O(1) at the end, O(n - k) in general
* For asingly linked list, O(1) at the head, or if we have a reference to the
element at position k-1; otherwise, in general, O(k)
* For a doubly linked list, O(1) at the head or tail, or if we have a reference

to that region of the list; in general, O(min(k, n - k))

Remark: For linked lists, insertion/deletion as such takes constant time, once

the node has been localized. However, getting to the node can take O(n) time.
7

Overview: Sequential data structures
copying-and-moving.zi
— Read/write access to a data item at position k YIRS I4P
* For adynamic array, O(1) time; fast access by pointer arithmetics
* Forasingly linked list, O(k) time, i.e., O(n) in the average/worst case
* For a doubly linked list, O(min(k, n - k)), which is still effectively O(n)

— Iterating over the data, i.e., proceeding from one item to the next one
* O(1) both for dynamic arrays and for linked lists

— Inserting an additional data item at position k
* For a dynamic array, O(n) in the worst case, i.e., whenever the capacity is exhausted;
with free capacity, O(1) at the end, O(n - k) elsewhere
* Forasingly linked list, O(1) at the head or tail, or if we have a reference to the
element at position k-1; Otherwise, in general, O(k)
* For a doubly linked list, O(1) at the head or tail, or if we have a reference to that
region of the list; in general, O(min(k, n - k))

Remark: For linked lists, insertion/deletion as such takes constant time, once
the node has been localized. However, getting to the node can take O(n) time.

Stacks and queues
Queue Example: copying-and-moving.zip
« NN, Nb k& m.

Definition: A queue is a sequential (list-like) dynamic data structure that functions by the principle
first in, first out (FIFO).

» A queue class must provide a method for appending an element, usually called push and done
on one end of the queue (e.g., engueue or push_back), and a method for detaching an element,
usually called pop and done at the other end of the queue (e.g., dequeue or pop front).

« Singly and doubly linked lists are well suitable for implementing a queue, since both push and
pop can be realized in constant time. However, a singly linked list should only be used if the
data structure includes an explicit reference to the tail node; otherwise, the whole list needs to
be traversed just to reach the tail, taking O(n) time.

« Dynamic arrays are less suitable for this purpose, requiring O(n) time for the push and pop
operations in the long run (as their capacity gets exhausted).

— Queues function by the principle “first in, first out” (FIFO)

* Can be implemented using a singly linked list (with a tail reference):
— Attach (enqueue / push) new elements at the tail of the list only
— Detach (dequeue / pop) elements from the head of the list only

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html#queue

Stacks and queues

Example: copying-and-moving.zip

— Stacks function by the principle “last in, first out” (LIFO)

* Can be implemented using a singly linked list:
— Attach (push) new elements at the head of the list only
— Detach (pop) elements from the head of the list only

* Can be implemented using a dynamic array:
— Attach (push) new elements at the end of the array only
— Detach (pop) elements from the end of the array only

— Queues function by the principle “first in, first out” (FIFO)

* Can be implemented using a singly linked list (with a tail reference):
— Attach (enqueue / push) new elements at the tail of the list only
— Detach (dequeue / pop) elements from the head of the list only

All these operations can be carried out in constant time;

in case of the push operation for the dynamic array, subject to capacity. 0

Linked data structures as containers

Example: copying-and-moving.zip

Container

e nn konteinar, container m.
e nb konteiner, container m.

Definition (Stroustrup): "A class with the main purpose of holding objects
is commonly called a container.”

« Container objects take ownership, i.e., responsibility for allocating
and deallocating any contained data. The programmer needs to
take care of this whenever there are data subject to manual
memory management (new and delete) in a self-designed container.

« Examples include the standard template library (STL) containers
(list, map, set, vector, eic.). Other than for educational purposes as
an exercise, it does not make sense to reimplement these standard
data structures by hand.

« Many problems require special, tailored container data structures in
order to be solved efficiently. It is then part of the development
work to both design and implement the required data structure.

See also: Object-oriented programming, pointer, queue.

11

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html#container

Noregs milj@- og

U
M B I biovitskaplege

universitet

3 Data structures

3.5 Linked data structures
3.6 Graphs and trees

INF205 26" February 2025

Graphs as non-sequential linked data structures

Sequential data structures arrange their items in
a linear shape. Sometimes that is not the best
solution, or it is not appropriate at all.

Drammen Linked data structures with a non-sequential

shape are graphs, which includes the important
special case of tree data structures.

Horten

A graph G = (V, E) is defined by its nodes V,
which are also called vertices, and edges E that
connect one node to another. Nodes and edges

Fredrikstad

can be labelled to give the graph a meaning.

Graphs can be used to represent relations ~ |
B (interpretant @, an

researcher a = : .
[J {is8ssertedEy) Lanswer to question g

Interlocutor

] KnowledgeClaim

between objects, such as distances on a

|5 Semiosis
map, or as a knowledge graph. (smerptererin) ™ cognitive step o by & | sttt
. which a obtains ¢ q
Trees are Oﬂ:en used as Sorted data DigitalArticulation) Y
b o [data 6 that allow a 1 R =(research question q]Question
structures, for efficiency reasons. ioconcludew | e |

13

Implementation: Adjacency lists

In a graph, one node can be connected to multiple other nodes. An adjacency
list (with various possible implementations) can be used to manage these links.

node graph with
label next labelled nodes

0
; e @

: vl 1| 7
adjacency — empty

list v i e
ISt @
(&) (D—(o)
v 1O

(list of nodes to which >
there is an edge)

list with pointers (or references)
to node 4 and node 5

Doubly-linked version of this: Two lists, for incoming and for outgoing edges.
14

Implementation: Incidence lists

An incidence list is a list of edges to which a node is incident. For adjacency

lists or incidence lists, various data structures can be used, e.g., dynamic arrays.

node edge
label out .
»| 3 | < |
+ a
_ /
edge =
~ source \\ edge
~ N\
o || node 0
target b
9 node 4
node 5 |4 _

graph with labelled
source nodes and edges
label
target

source

label

target

Doubly-linked version of this: Two lists, for incoming and for outgoing edges.

15

Implementation: Adjacency matrix

Matrix-like data structures include two-dimensional arrays, i.e., arrays where
the individual elements are accessed by double indexing. The most relevant
use for graphs is the adjacency matrix. (Also possible: An incidence matrix.)

bool adj[5][5]={ {true, true, true, false, false}, out of node 0
{false,false, false, true, false}, out of node 1
{true, true, false, false, false}, out of node 2
{false,true, true, false, false}, out of node 3

{true, false, true, false, false} }; out of node 4

For a sparse graph, the vast majority of entries in the 2D array/matrix is “false”.
Adjacency matrices are commonly only used when expecting a dense graph.

16

Noregs milj@- og

U
M B I biovitskaplege

universitet

Knowledge graphs: Use
of graph structures for
knowledge representation

INF205 26" February 2025

Knowledge bases: TBox and ABox

A knowledge base for linked data consists of two components:

Definition: A knowledge base, given by K = (T, A), consists of an
ontology T, describing universals, and a set of assertions A
describing concrete instances of these universals.

ABox = knowledge graph

entity (sometimes: attribute)
particular: individual relationship property
object
entity type relationship type (sometimes: attribute type)
universal: concept relation attribute
class (in OWL: ObjectProperty) (in OWL: DatatypeProperty)

TBox = ontology

18

Semantics represented as a graph

Modern knowledge bases represent knowledge about the state of affairs as

knowledge graphs. These graphs are understood as part of one semantic web.

Kurs

erlnstansAv

Studieveileder

Rune
Grgnnevik

tilbyddAvFakultet

harStudieveileder
erlnstansAv

INF205
2025V

Kurs

Fa kultet

Studieveileder

Marie Vollseth

harStudieveileder

Knowledge graphs
contain individuals
(objects) as nodes.

They contain
relations (binary
predicates) as edges.

They may also
visually represent the
instantiation of
concepts (classes).

19

Querying graph databases using SPARQL

SPARQL is a recursive acronym: “SPARQL Protocol and RDF Query Language.”
An interface that can handle SPARQL queries is called a SPARQL end point.

The syntax of SPARQL is reminiscent of SQL, but at its core is given by
* RDF triples, using RDF schema and OWL, in TTL notation;
* Some elements of the triples are wildcards, i.e., free variables.
SELECT ?x ?y “Produce a table with course instances in

WHERE { ~_— thefirst column and the study advisors

?x erlnstansAv ?emnekode.
. i th
?emnekode tilbyddAvFakultet ?fakultet. e th? el rEsfpemsile s e e
course in the second colum.”

?fakultet harStudieveilder ?y.
}

The semantics of SPARQL is given by the correct response to a SPARQL query,

which consists of a table with all matching valuations of the selected wildcards.

SPARQL querying therefore corresponds to the subgraph matching problem

from graph theory: It looks for occurrences of a pattern within a larger graph.
20

Querying graph databases

r' I Norwegian University
- of Life Sciences

Subgraph matching problem (NP-complete):

Given a graph G and a pattern H, does G contain a subgraph isomorphic to H?

graph G

Studieveileder

Rune
Grgnnevik

harStudieveileder

Studieveileder

Marie Vollseth

harStudieveileder

pattern H

erlnstansAv
?X >

tilbyddAvFakultet

harStudieveileder
y |

SPARQL querying therefore corresponds to the subgraph matching problem

from graph theory: It looks for occurrences of a pattern within a larger graph.
INF205 26" February 2025 21

Institutt for datavitskap

B Noregs milj@- og
biovitskaplege
M universitet

Trees: Acyclic graphs

INF205 26" February 2025

r' I Norwegian University
- of Life Sciences

Tree data structures

Trees are a special kind of graph; or graphs are a generalization of trees:

tree (a kind of graph) a binary search tree

unique path O

to node /

unique

nullptr \/ nullptr
O‘VO ®
/ nullptr /

nullptr nullptr nullptr

Definition (“tree”; in the literature, also: "out-tree” or “rooted tree"”)

A tree is a graph with a root and a unique path from the root to each node.

INF205 26" February 2025 23

Graph traversal

Traversal of graphs: Depth-first search and breadth-first search

DFS always proceeds from the most recently detected node (LIFO).
BFS always proceeds from the node that was detected earliest (FIFO).

depth-first search (DFS) breadth-first search (BFS)

@O+ (O=—@)

oo N el
e K

here here

Note: Only elements to which there is a path from the initial node can be found.

24

Norges miljg- og

e
biovitenskapelige
M

universitet

INF205
Resource-efficient programming

3 Data structures and libraries

3.1 Co-design data & code 3.4 Containers
3.2 Shared libraries 3.5 Linked data
3.3 CMake 3.6 Graphs and trees

INF205 26" February 2025

