
INF205 26th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures and libraries

3.1 Co-design data & code 3.4 Containers
3.2 Shared libraries 3.5 Linked data
3.3 CMake 3.6 Graphs and trees

INF205 26th February 2025

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.5 Linked data structures
3.6 Graphs and trees

326th February 2025INF205

Linked lists (singly linked)

34

item next

1

item next

7

item next

head tail

nullptr

12

item next

Linked lists are dynamic data structures. Their elements are not contiguous in
memory. Therefore, pointer arithmetics and increments (p++) cannot be used.
Instead, the linked list consists of nodes.

Example task: Insert 12 after node x, to which we already have a reference.

426th February 2025INF205

Linked lists (doubly linked)

1

item nextprev

12

item nextprev

7

item nextprev

head tail

nullptr

nullptr

In a doubly linked list, each node also contains a reference (or pointer) to the
previous node. This facilitates traversal in both directions and inserting a new
data item before any given node (rather than only after it), all in constant time.

Singly linked lists require two variables per data item (item and next).
Doubly linked lists require three variables per data item (prev, item, and next).

526th February 2025INF205

From singly to doubly linked

// add an item at the beginning of the list
void SinglyLinkedList::push_front(
 const int& pushed_item
) {
 SinglyLinkedListNode* new_node

 = new SinglyLinkedListNode;
 new_node->set_item(pushed_item);

 if(this->empty()) this->tail = new_node;
 else
 new_node->set_next(this->head);

 this->head = new_node;
}

// add an item at the beginning of the list
void DoublyLinkedList::push_front(
 const int& pushed_item
) {
 DoublyLinkedListNode* new_node

 = new DoublyLinkedListNode;
 new_node->set_item(pushed_item);

 if(this->empty()) this->tail = new_node;
 else {
 new_node->set_next(this->head);
 this->head->set_prev(new_node);
 }
 this->head = new_node;
}

For every link forward (next),
there is now also a link
backward (prev).

head tail

…

…

nullptrnullptr
pushed
_item

head tail

…

…

pushed
_item

6

Discussion: Deleting or copying a list

Say we have a linked-list object x, consisting of the fields “head” and “tail”.

– The object runs out of scope and is getting deallocated. We did not
define a constructor, so the default constructor is used.

• What will this do? Is it what we want?

– We assign the value of x to another list object y, writing “y = x”. By de-
fault, this means that the property values “head” and “tail” are copied.

• Is this reasonable? What could the user be expecting instead?

Or: We have a singly-linked-list node object, consisting of “item” and “next”.

– What will happen upon deallocation by default? What should happen?
– What will happen upon copying by default? What should happen?

7

Overview: Sequential data structures

– Read/write access to a data item at position k
• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case
• For a doubly linked list, O(min(k, n – k)), which is still effectively O(n)

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists

– Deleting a data item at position k
• For a dynamic array, O(1) at the end, O(n – k) in general
• For a singly linked list, O(1) at the head, or if we have a reference to the

element at position k–1; otherwise, in general, O(k)
• For a doubly linked list, O(1) at the head or tail, or if we have a reference

to that region of the list; in general, O(min(k, n – k))

Remark: For linked lists, insertion/deletion as such takes constant time, once
the node has been localized. However, getting to the node can take O(n) time.

Example: copying-and-moving.zip

8

Overview: Sequential data structures

– Read/write access to a data item at position k
• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case
• For a doubly linked list, O(min(k, n – k)), which is still effectively O(n)

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists

– Inserting an additional data item at position k
• For a dynamic array, O(n) in the worst case, i.e., whenever the capacity is exhausted;

with free capacity, O(1) at the end, O(n – k) elsewhere
• For a singly linked list, O(1) at the head or tail, or if we have a reference to the

element at position k–1; Otherwise, in general, O(k)
• For a doubly linked list, O(1) at the head or tail, or if we have a reference to that

region of the list; in general, O(min(k, n – k))

Remark: For linked lists, insertion/deletion as such takes constant time, once
the node has been localized. However, getting to the node can take O(n) time.

Example: copying-and-moving.zip

9

Stacks and queues

– Queues function by the principle “first in, first out” (FIFO)

• Can be implemented using a singly linked list (with a tail reference):
– Attach (enqueue / push) new elements at the tail of the list only
– Detach (dequeue / pop) elements from the head of the list only

Example: copying-and-moving.zip

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html#queue

10

Stacks and queues

– Stacks function by the principle “last in, first out” (LIFO)

• Can be implemented using a singly linked list:
– Attach (push) new elements at the head of the list only
– Detach (pop) elements from the head of the list only

• Can be implemented using a dynamic array:
– Attach (push) new elements at the end of the array only
– Detach (pop) elements from the end of the array only

– Queues function by the principle “first in, first out” (FIFO)

• Can be implemented using a singly linked list (with a tail reference):
– Attach (enqueue / push) new elements at the tail of the list only
– Detach (dequeue / pop) elements from the head of the list only

All these operations can be carried out in constant time;
in case of the push operation for the dynamic array, subject to capacity.

Example: copying-and-moving.zip

11

Linked data structures as containers
Example: copying-and-moving.zip

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html#container

INF205 26th February 2025

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.5 Linked data structures
3.6 Graphs and trees

13

Graphs as non-sequential linked data structures

Sequential data structures arrange their items in
a linear shape. Sometimes that is not the best
solution, or it is not appropriate at all.

Linked data structures with a non-sequential
shape are graphs, which includes the important
special case of tree data structures.

A graph G = (V, E) is defined by its nodes V,
which are also called vertices, and edges E that
connect one node to another. Nodes and edges
can be labelled to give the graph a meaning.

Graphs can be used to represent relations
between objects, such as distances on a
map, or as a knowledge graph.

Trees are often used as sorted data
structures, for efficiency reasons.

cognitive step σ by
which a obtains φ

Semiosis

researcher a

data δ that allow a
to conclude φ

DigitalArticulation

Interlocutor

KnowledgeClaiminterpretant φ, an
answer to question q

research question q Question

B
.

(isAssertedBy)

(isAbout)

Ë

Pι
..

(isInterpreterIn)

R
^

R
^

q (hasSubjectMatter)

E
.

E
…

Oslo

Ski

Ås

MossHorten

Drammen

Sarpsborg

Fredrikstad

Rakkestad

Askim

33 22

7

21

21

43

60

30

63

27
13

29

26

14

Implementation: Adjacency lists

0

label next

adjacency
list

1

2

3

node

empty
list

empty
list

list with pointers (or references)
to node 4 and node 5

(list of nodes to which
there is an edge) 0

1

2

3

4

5

7

8

6

graph with
labelled nodes

9

In a graph, one node can be connected to multiple other nodes. An adjacency
list (with various possible implementations) can be used to manage these links.

Doubly-linked version of this: Two lists, for incoming and for outgoing edges.

15

Implementation: Incidence lists

Doubly-linked version of this: Two lists, for incoming and for outgoing edges.

An incidence list is a list of edges to which a node is incident. For adjacency
lists or incidence lists, various data structures can be used, e.g., dynamic arrays.

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b

b

d

graph with labelled
nodes and edges

3

label out

9

c
a

label

label

source

target

target

source

edge

edge

node 5

node 4

node 0

edge

source

label

a

b

a

target

node

16

Implementation: Adjacency matrix

Matrix-like data structures include two-dimensional arrays, i.e., arrays where
the individual elements are accessed by double indexing. The most relevant
use for graphs is the adjacency matrix. (Also possible: An incidence matrix.)

For a sparse graph, the vast majority of entries in the 2D array/matrix is “false”.
Adjacency matrices are commonly only used when expecting a dense graph.

0

1

2

3

4

bool adj[5][5]={ {true, true, true, false, false},

{false,false, false, true, false},

{true, true, false, false, false},

{false,true, true, false, false},

{true, false, true, false, false} };

out of node 0

out of node 1

out of node 2

out of node 3

out of node 4

INF205 26th February 2025

Digitalisering på Ås

Institutt for datavitskap

Knowledge graphs: Use
of graph structures for
knowledge representation

18

Knowledge bases: TBox and ABox

A knowledge base for linked data consists of two components:

Definition: A knowledge base, given by K = (T, A), consists of an
ontology T, describing universals, and a set of assertions A
describing concrete instances of these universals.

particular: individual relationship property

universal: concept relation attribute

entity

entity type relationship type

(sometimes: attribute)

(sometimes: attribute type)

object

class (in OWL: ObjectProperty) (in OWL: DatatypeProperty)

ABox = knowledge graph

TBox = ontology

19

Semantics represented as a graph

Modern knowledge bases represent knowledge about the state of affairs as
knowledge graphs. These graphs are understood as part of one semantic web.

Knowledge graphs
contain individuals
(objects) as nodes.

They contain
relations (binary
predicates) as edges.

They may also
visually represent the
instantiation of
concepts (classes).

INF205

Emne

INF205
2024V

Kurs

Kurs

INF205
2025V

erInstansAv

erInstansAv

REALTEK
Fakultet

tilbyddAvFakultet

Rune
Grønnevik

harStudieveileder

Studieveileder

Studieveileder

Marie Vollseth

harStudieveileder

20

SPARQL is a recursive acronym: “SPARQL Protocol and RDF Query Language.”

An interface that can handle SPARQL queries is called a SPARQL end point.

The syntax of SPARQL is reminiscent of SQL, but at its core is given by
● RDF triples, using RDF schema and OWL, in TTL notation;
● Some elements of the triples are wildcards, i.e., free variables.

The semantics of SPARQL is given by the correct response to a SPARQL query,

which consists of a table with all matching valuations of the selected wildcards.

SPARQL querying therefore corresponds to the subgraph matching problem

from graph theory: It looks for occurrences of a pattern within a larger graph.

SELECT ?x ?y
WHERE {
 ?x erInstansAv ?emnekode.
 ?emnekode tilbyddAvFakultet ?fakultet.
 ?fakultet harStudieveilder ?y.
}

“Produce a table with course instances in
the first column and the study advisors
from the faculty responsible for the
course in the second colum.”

Querying graph databases using SPARQL

2126th February 2025INF205

SPARQL querying therefore corresponds to the subgraph matching problem

from graph theory: It looks for occurrences of a pattern within a larger graph.

Querying graph databases

Subgraph matching problem (NP-complete):

Given a graph G and a pattern H, does G contain a subgraph isomorphic to H?

pattern Hgraph G

INF205

Emne

INF205
2024V

Kurs

Kurs

INF205
2025V

erInstansAv

erInstansAv

REALTEK
Fakultet

tilbyddAvFakultet

Rune
Grønnevik

harStudieveileder

Studieveileder

Studieveileder

Marie Vollseth

harStudieveileder

erInstansAv

tilbyddAvFakultet

harStudieveileder

?x

?y

INF205 26th February 2025

Digitalisering på Ås

Institutt for datavitskap

Trees: Acyclic graphs

2326th February 2025INF205

Tree data structures

Trees are a special kind of graph; or graphs are a generalization of trees:

tree (a kind of graph)

unique
root

Definition (“tree”; in the literature, also: “out-tree” or “rooted tree”)

A tree is a graph with a root and a unique path from the root to each node.

unique path
to node

4

6

7

nullptr

nullptr

nullptr

nullptr

nullptr

5

nullptr nullptr

nullptr

8

nullptr nullptr

0

1

2

3

a binary search tree

24

Graph traversal

Traversal of graphs: Depth-first search and breadth-first search

depth-first search (DFS)

0

12

3 4

5

67

8

9

0

1

2

3

4

5

7

9

8

6

begin
here

breadth-first search (BFS)

begin
here

DFS always proceeds from the most recently detected node (LIFO).
BFS always proceeds from the node that was detected earliest (FIFO).

Note: Only elements to which there is a path from the initial node can be found.

INF205 26th February 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures and libraries

3.1 Co-design data & code 3.4 Containers
3.2 Shared libraries 3.5 Linked data
3.3 CMake 3.6 Graphs and trees

