
INF205 26th February 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures

3.1 Object orientation
3.2 Inheritance
3.3 Linked data structures

3.4 Containers
3.5 Graph data structures
3.6 Streams and file I/O



226th February 2024INF205

Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html 

???

???

???

wild pointer

constant 
expression

dynamic 
library

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html


INF205 26th February 2024

Digitalisering på Ås

Institutt for datavitskap

Recapitulation and
looking into the second 
worksheet

On Fagpersonweb, there are now 35 registered course participants.
Out of these registered participants, 29 submitted the first worksheet.
Out of these submissions, 26 passed the first worksheet, 3 did not.



426th February 2024INF205

Mandatory activities

On Fagpersonweb, there are now 35 registered course participants.
Out of these registered participants, 29 submitted the first worksheet.
Out of these submissions, 26 passed the first worksheet, 3 did not.

– There will be five lab worksheets, of which you are required to pass at 
least three. A worksheet is passed if the majority of its problems have 
been solved (more or less) correctly.

– Collaboration between two people is allowed; then, submit on Canvas 
twice. Write explicitly when there is a collaboration or joint submission.

– Solutions to the problems are presented by students in the tutorial 
(data lab) sessions. Everybody needs to present once. Other than this, 
attendance at the tutorial (data lab) or lecture is in no way mandatory.

– Programming projects are also presented, individually or as a group.



526th February 2024INF205

Allocate: new. Deallocate: delete.

Allocation: Reserve memory to store data.
Deallocation: Release the memory.

On the stack

The stack is already handled completely and safely by the compiler. Memory 
on the stack (local variables of functions) is allocated as part of a stack frame 
when the function is called. It is deallocated again when the function returns.

On the heap

Memory on the heap is managed independent of the stack, at runtime, 
subject to explicit allocation and deallocation instructions that must come 
from the programmer. There is no garbage collection in C++!

– Allocation is done with new. Example: int* i = new int;
– Deallocation is done with delete. Example: delete i;



6

Manual memory management: Common mistakes

Repetition: We talked about three main kinds of mistakes in manual memory 
management. What were they?   (1) … …   (2) … …   (3) … … 

Strategies that we had identified for trying to avoid these mistakes:

1) Avoid manual memory management if 
possible; use the stack, not the heap.

● Don’t work with pointers unless there is 
a clear advantage. Don’t pass by 
reference without a good reason.

2) Assign clear responsibilities for what part 
of the code is to allocate each data item 
that you create on the heap.

● Create a “container” that “owns” it. If 
suitable, library (e.g. STL) containers.

Smart pointers are very 
elementary containers. They 
have ownership over the 
object to which they point.

Instead of T*, where T is the 
type, we can use 
std::unique_pointer<T> or 
std::shared_pointer<T>.

See Core Guidelines I.11.

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-use-ptr


7

Example: Fixing a memory leak

bool is_prime(long* n)  {
   if((*n%2 == 0) || (*n%3 == 0))  {
      delete n;  return false;
   }

   for(long i = 5; *n >= i*i; i += 6)  {
      if((*n % i == 0) || (*n % (i+2) == 0))  {
         delete n;  return false;
      }
   }

   return true;
}

double time_measurement(long n)  {
   auto t0 = high_resolution_clock::now();
   for(int i = 0; i < num_tests; i++)  {
      is_prime(new long{n});
   }
   auto t1 = high_resolution_clock::now();

   return duration_cast<nanoseconds>(t1-t0).count()
      / (double)num_tests;
}

int main()  {
   for(long x = xmin; xmax >= x; x += xstep)
      cout << x << "\t" << time_measurement(x) << "\n";
}

The code in is-prime-memory-leak.zip is an extreme example of poor coding.
As a consequence, it will cause a memory leak.

We can try both strategies, (a) clear responsibility for deallocating the item on 
the heap, and (b) avoiding the heap. Which of the two makes more sense?



8

Second worksheet: Questions and discussion

float* crw::step(long size, float previous[])
{

// allocate the next configuration
float* config = new float[size]();

// first, let the chain contract: 
// each element is attracted
// by its neighbours
for(long i = 0; i < size; i++)

config[i] = 0.5*previous[i]
+ 0.25*previous[(i-1) % size]
+ 0.25*previous[(i+1) % size];

// actual random walk step
stochastic_unit_step(size, config);  

// shift such that the average is zero
shift_centre_to_origin(size, config);  

return config;
}

Example file: memleak.zip

int main(int argc, char** argv)  {
[...]
// configuration: an array of float numbers
float* present_configuration

= new float[size]();
[...]

for(long i = 0; i < steps; i++)  {
[...]
// do the random walk step
present_configuration

= crw::step(size,
present_configuration);

float present_elongation
= crw::elongation(size,

present_configuration);
[...]

}      
delete[] present_configuration;

}



926th February 2024INF205

Structure of the course

1) Introduction (week 6)
● Getting started – the lecture last week.

2) The C/C++ programming language(s) (weeks 7 and 8)
● Essential features that make C/C++ different from Python; e.g., dealing 

with memory allocation and deallocation explicitly, using pointers.

3) Data structures (weeks 9 to 11)
● Linked data structures, containers, C++ standard template library.
● Memory management for container data structures.

4) Concurrency (week 12 to 17)
● MPI and ROS2 for parallel programming and concurrent processes.

5) Production and optimization (week 18 and 19)
● Good practices and useful tools for programming projects.



INF205 26th February 2024

Digitalisering på Ås

Institutt for datavitskap

Core Guidelines:

C.3 – C.11
C.43 – C.51

(and more in “C”)

3 Data structures

3.1 Object orientation

Sections 5.1, 5.2



11

Class definitions: From Python to C++

«“private” instance variables that cannot 
be accessed except from inside an 
object don’t exist in Python.

However, there is a convention that is 
followed by most Python code: a name 
prefixed with an underscore (e.g. 
_spam) should be treated as a non-
public part of the API (whether it is a 
function, a method or a data member). 
It should be considered an 
implementation detail and subject to 
change without notice.»

Python tutorial, Section 9.6:

Why is it bad practice to do this? 
What should we do instead?

Example file: book-index-python.ipynb

https://docs.python.org/3/tutorial/classes.html#private-variables


12

Class definitions: From Python to C++

class BookIndex
{
   int chapter = 1;
   int section = 1;
   int page = 1;

   int next_chapter();

   int next_section();

   int next_page();

   void out() const;
}

int BookIndex::next_chapter( )   {
   this->chapter++;
   this->section = 1;
   this->page++;
   return this->chapter;
}

int BookIndex::next_section( )   {
   this->section++;
   return this->section;
}

int BookIndex::next_page( )   {
   this->page++;
   return this->page;
}

void BookIndex::out( ) const  {
   cout << "Section " << this->chapter
            << "." << this->section
            << ", p. " << this->page << "\n";
}

A method is a function that belongs 
to an object. Methods are declared 
in the class definition (header file) 
and usually defined in the code file.

Example file: book-index.zip



13

Class definitions: From Python to C++

class BookIndex
{
   int chapter = 1;
   int section = 1;
   int page = 1;

   int next_chapter();

   int next_section();

   int next_page();

   void out() const;
}

How do Python and C++ 
deal with argument passing?

int BookIndex::next_chapter( )   {
   this->chapter++;
   this->section = 1;
   this->page++;
   return this->chapter;
}

int BookIndex::next_section( )   {
   this->section++;
   return this->section;
}

int BookIndex::next_page( )   {
   this->page++;
   return this->page;
}

void BookIndex::out( ) const  {
   cout << "Section " << this->chapter
            << "." << this->section
            << ", p. " << this->page << "\n";
}

The pointer this is analogous to the object reference 
“self” from Python. It points to the object itself.

If a method is declared as const, it cannot change 
any of the object’s own properties.

Example file: book-index.zip



14

Access object members using dot (.) and arrow (->)

class BookIndex
{
   int chapter = 1;
   int section = 1;
   int page = 1;

   int next_chapter();

   int next_section();

   int next_page();

   void out() const;
}

int BookIndex::next_chapter( )   {
   this->chapter++;
   this->section = 1;
   this->page++;
   return this->chapter;
}

int BookIndex::next_section( )   {
   this->section++;
   return this->section;
}

int BookIndex::next_page( )   {
   this->page++;
   return this->page;
}

void BookIndex::out( ) const  {
   cout << "Section " << this->chapter
            << "." << this->section
            << ", p. " << this->page << "\n";
}

The pointer this is analogous to the object reference 
“self” from Python. It points to the object itself.

If a method is declared as const, it cannot change 
any of the object’s own properties.

Example file: book-index.zip
Properties: Variables of an object; 
Methods: Functions of an object.

The properties and methods are 
called the members of the object.

Just like in Python, the dot operator 
can be used to access a member:

   BookIndex b;
   b.chapter = 1;

Often we deal with pointers to an 
object. Then we might write:

   BookIndex* c = &b;
   (*c).chapter = 2;

The arrow operator abbreviates this:

   c->chapter = 2;



15

Private members cannot be accessed from outside

The private and public status of class members (i.e., properties and methods) 
is stated in the class definition, where properties and methods are declared:

class ExampleClass {
public:
   TypeA getPropertyA() const {return this->propertyA;}
   TypeB* getPropertyB() const {return this->propertyB;}
   void setPropertyA(TypeA a) {this->propertyA = a;}
   void setPropertyA(TypeB* b) {this->propertyB = b;}
   void do_something();

private:
   TypeA propertyA;
   TypeB* propertyB;

   void helper_method();
};

Only the public part of 
the class definition is the 
interface accessible to 
code outside the scope of 
the class.

Typical object-oriented design makes all properties 
(objects’ variables) private. They are read using public 
“get” methods and modified using public “set” methods.

Methods that are only called by other methods of the same 
class, but not from outside, are also declared to be private.



16

Constructors and destructors

Constructor: A method that is called when an object is allocated.
Destructor: A method that is (implicitly) called when an object is deallocated.

They are not mandatory (as we have seen); use them if you need to specify 
some functionality for this purpose. Most typically:

– Provide a constructor if you want to give the user control over how the 
private properties of an object are initialized.

– There are also special “copy constructors” and “move constructors”.
(Not to be discussed right now.)

– Provide a destructor if your memory management strategy requires it; 
there might be properties stored as pointers that need to be deleted.

class BookIndex {
public:
   BookIndex(int c, int s, int p);
   ~BookIndex();
   …
};

BookIndex::BookIndex(int c, int s, int p) {
   this->chapter = c; this->section = s; this->page = p;
}
BookIndex::~BookIndex() {
   cout << "Deleting a BookIndex object.\n";
}



17

Constructors and destructors

General rule: For every “new” there must be a matching “delete”.

class T
{
public:
   …
   ~T() { delete this->p; }
   …
private:
   S* p …
}

The destructor T::~T() is called when 
an object of type T is deallocated.

void function_name(…)
{
   // constructor is called
   T tobject;  
   …
   // destructor is called
   return;  
}

{
   …
   // constructor is called
   T* tpointer = new T;  
   …
   // destructor is called
   delete T;  
}

This is the case both for objects on the 
stack and on the heap:

There might by 
other properties 
that do not need 
to be deallocated 
manually. (Why?)

If T has ownership over 
p, this must be done! 

Without it,
there would be a 

memory leak!



18

OOP as a programming paradigm

Imperative programming
– It is stated, instruction by instruction, what 

the processor should do
– Control flow implemented by jumps (goto)

Structured programming
– Same, but with higher-level control flow
– Contains “instruction by instruction” code

Procedural programming
– Functions (procedures) as highest-level 

structural unit of code
– Still contains loops, etc., for control flow 

within a function

Object-oriented programming (OOP)
– Classes as highest-level structural unit of 

code; objects instantiate classes
– Still contains functions, e.g., as methods

Functional programming
(also: “declarative programming”)

Constraint programming

Logic programming

Programming paradigms based 
on describing the solution 

rather than computational steps:

Generic programming
(introduces ideas from declarative 

and logical methods into OOP)



19

Why object orientation?

The job of variables is to store data. In object oriented programming (OOP) 
the focus is on how data belong together and how we can facilitate safe and 
correct access to data. How do data-centered tools (DBs, etc.) present data?

Example: “Largest cities by 
country” query on Wikidata.



20

Designing classes: Entity-relationship diagrams

particular: object relationship property

universal: class relation attribute

entity

entity type

(sometimes: attribute)

(sometimes: attribute type)
individual

concept (in OWL: DatatypeProperty)

 City 

ID

name

population

 Country  

ID

name

long, unique

std::string

int

int, unique

std::string



21

Designing classes: Entity-relationship diagrams

particular: object relationship property

universal: class relation attribute

entity

entity type relationship type

(sometimes: attribute)

(sometimes: attribute type)
individual

concept (in OWL: ObjectProperty) (in OWL: DatatypeProperty)

 City 

ID

name

population

 Country  

ID

name

city is in 
country

“every City is in such a relationship”

“it is an N-to-1 relation from Cities to Countries”

1..1 0..*

(or use cardinality constraints, as in red above)



22

Implement relations using non-owning pointers 

By storing a pointer to object B as a property of object A, we can encode the 
relationship between A and B, so that methods from A can access B.

This can go both ways, if needed. Then B also has a pointer to A as a property:

Example file: city-country.zip

   class City
   {
    public:
      City(string in_name, int in_population, Country* in_country);
      …

    private:
      long ID;
      string name;
      long population;
      
      Country* country;
   };

   class Country
   {
    public:
      Country(string in_name);

      void add_city(City* c);
      ...
        
    private:
      int ID;
      string name;
      vector<City*> cities;
   };



23

Constructors and destructors: Do I need them?

Core Guidelines:

– C.20: “If you can avoid defining default operations, do.”

• “This is known as “the rule of zero.” Define zero constructors or 
destructors if it can be done without creating an inconsistent state.

• A simple and good reason for defining a constructor is to force the 
user to provide some information that is required.

• Define a constructor in cases where it does not make sense to 
initialize the object’s properties to some specified default value.

– C.30: “Define a destructor if a class needs an explicit action at object 

destruction.” And related, C.31: “All resources acquired by a class 

must be released by the class’s destructor.”
• If a data structure needs to be built up (memory allocated, etc.), 

this normally requires both a constructor and a destructor.
• For such cases, we will learn the rule of three and the rule of five.

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-class
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-class
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-class


INF205 26th February 2024

Digitalisering på Ås

Institutt for datavitskap

Tutorial scheduling



INF205 26th February 2024

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.1 Object orientation
3.2 Inheritance

Sections 5.3 – 5.5

Core Guidelines:

C.120, C.121
C.146 – C.148

(and more in “C”)



26

Taxonomy: Representation in an E-R diagram

Example from Silberschatz et al.1 (Fig. 6.18):

 Person 

ID

name

street

city Employee 

salary

 Student 

tot_credits

 Instructor 

rank

 Secretary 

hours_per_week

1A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, 7th int. stud. edn., McGraw-Hill, 2019.



2726th February 2024INF205

Taxonomy (class hierarchy)

Classes can stand in a hierarchical relationship: A more general superclass 
and its more specific subclass (also, “derived class” or “child”).

An object of the subclass then (automatically) is also an object of the 
superclass; it has all the members defined in its class definition, but also 
inherits the members defined for the superclass, to which it also belongs.

LiteratureIndex

BookIndex JournalArticleIndex

Example file: literature-indices.zip



2826th February 2024INF205

Taxonomy (class hierarchy) in C++

Classes can stand in a hierarchical relationship: A more general superclass 
and its more specific subclass (also, “derived class” or “child”).

An object of the subclass then (automatically) is also an object of the 
superclass; it has all the members defined in its class definition, but also 
inherits the members defined for the superclass, to which it also belongs.

LiteratureIndex

BookIndex JournalArticleIndex

class LiteratureIndex {
public:
   virtual int next_page();
   …
private:
   int year = 0;
   …
};

class JournalArticleIndex: public LiteratureIndex {
public:
   int next_page();
   …
private:
   int volume = 0;
   …
};

JournalArticleIndex has the property 
volume, but it also inherits the 
property year.

It can override the next_page 
method definition from its 
superclass, because it is virtual.

Example file: literature-indices.zip



INF205 26th February 2024

Digitalisering på Ås

Institutt for datavitskap

Conclusion



3026th February 2024INF205

Weekly glossary concepts

What are essential concepts from this lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html 

???
???

???

object-
oriented 

programming

class

relation

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html


INF205 26th February 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures

3.1 Object orientation
3.2 Inheritance
3.3 Linked data structures

3.4 Containers
3.5 Graph data structures
3.6 Streams and file I/O


