
INF205 4th March 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures

3.1 Object orientation
3.2 Inheritance
3.3 Linked data structures

3.4 Containers
3.5 Graph data structures
3.6 Streams and file I/O

24th March 2024INF205

Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???
???

???

object-
oriented

programming

class

relation

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 4th March 2024

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.1 Object orientation
3.2 Inheritance

Sections 5.3 – 5.5

Core Guidelines:

C.120 – C.122
C.146 – C.148

(and more in “C”)

44th March 2024INF205

E-R notation: Taxonomy/class hierarchy

Example from Silberschatz et al.1 (Fig. 6.18):

 Person

ID

name

street

city Employee

salary

 Student

tot_credits

 Instructor

rank

 Secretary

hours_per_week

1A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, 7th int. stud. edn., McGraw-Hill, 2019.

54th March 2024INF205

Class hierarchy implementation in C++

Classes can stand in a hierarchical relationship: A more general superclass
and its more specific subclass (also, “derived class” or “child”).

An object of the subclass then (automatically) is also an object of the
superclass; it has all the members defined in its class definition, but also
inherits the members defined for the superclass, to which it also belongs.

LiteratureIndex

BookIndex JournalArticleIndex

class LiteratureIndex {
public:
 virtual int next_page();
 …
private:
 int year = 0;
 …
};

class JournalArticleIndex: public LiteratureIndex {
public:
 int next_page();
 …
private:
 int volume = 0;
 …
};

JournalArticleIndex has the property
volume, but it also inherits the
property year.

It can override the next_page
method definition from its
superclass, because it is virtual.

Example file: literature-indices.zip

6

Abstract classes and concrete subclasses

The code sequences-int.zip has an abstract class at the top of a class hierarchy.

Such a class has a pure virtual method that is only declared, but not defined.
The declaration uses the construction “virtual … method(…) = 0;”.

Sequence

SinglyLinkedListDynamicArray DoublyLinkedList

 class Sequence
 {
 public:
 virtual bool empty() const = 0; // whether sequence is empty
 virtual size_t size() const = 0; // size (number of items)

 virtual int& front() = 0; // return reference to first item
 virtual int& back() = 0; // return reference to final item

 virtual int& at(int i) = 0; // reference to item at index i

 ...
 };

A class is concrete (i.e., not
abstract) if it does not have
any pure virtual methods.

If it has an abstract
superclass, it must override
(define) all its pure virtual
method declarations.

7

Core guidelines

An abstract class might contain “normal” methods in addition to its pure
virtual method(s). If it only has pure virtual methods, it is a pure abstract class.
Such classes are used to specify interfaces.

– C.120: Use class hierarchies to represent concepts with inherent

hierarchical structure (only).
– C.121: If a base class is used as an interface, make it a pure abstract

class.
– C.122: Use abstract classes as interfaces when complete separation of

interface and implementation is needed.

Concerning virtual methods and overriding:

– C.128: Virtual functions should specify exactly one of virtual, override,

or final.

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

8

Dynamic array implementation

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array? O(1) at the end, O(n) elsewhere.
All the elements with greater indices need to be shifted.

– Extending the array by one element? O(1) at the end, if there is capacity.
O(n) elsewhere, or if the capacity of the dynamic array is exhausted.

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

7

x[6]

7 free free

x + 3 = &x[3]

logical
size is 7

9

capacity is 9

9

Abstract classes and concrete subclasses

The sequences-int.zip archive contains an example implementation.

Interface (abstract class) from Sequence:

– bool empty() const;
– size_t size() const;

– int& front();
– int& back();
– int& at(int i);

– void push_front(const int& in);
– void push_back(const int& in);
– void push(const int& in);
– void insert_at(int idx, const int& in);

– void pop_front();
– void pop_back();
– void pop(const int& in);
– void erase_at(int idx);
– void clear();

class DynamicArray: public Sequence {
public: … // implement all the interface from Sequence
 ~DynamicArray() { this->clear(); }

private:
 int* values = nullptr;

 size_t logical_size = 0; // how many data items are we storing?
 size_t capacity = 0; // how much memory did we allocate?

 // shift to static array with increased/decreased capacity
 void resize(size_t new_capacity);
};

Capacity takes values 0, 1, 2, 4, 8, 16, …

For several tasks we need to copy data that
are contiguous in memory. For this, we use
std::copy(init, end, target) from <algorithm>.

INF205 4th March 2024

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.1 Object orientation
3.2 Inheritance
3.3 Linked data structures

11

Linked lists (singly linked)

34

item next

1

item next

7

item next

head tail

nullptr

12

item next

Linked lists are dynamic data structures. Their elements are not contiguous in
memory. Therefore, pointer arithmetics and increments (p++) cannot be used.
Instead, the linked list consists of nodes.

Example task: Insert 12 after node x, to which we already have a reference.

12

Linked lists (doubly linked)

1

item nextprev

12

item nextprev

7

item nextprev

head tail

nullptr

nullptr

In a doubly linked list, each node also contains a reference (or pointer) to the
previous node. This facilitates traversal in both directions and inserting a new
data item before any given node (rather than only after it), all in constant time.

Singly linked lists require two variables per data item (item and next).
Doubly linked lists require three variables per data item (prev, item, and next).

13

Discussion: Deleting or copying a linked list

Say we have a linked-list object x, consisting of the fields “head” and “tail”.

– The object runs out of scope and is getting deallocated. We did not
define a constructor, so the default constructor is used.

• What will this do? Is it what we want?

– We assign the value of x to another list object y, writing “y = x”. By de-
fault, this means that the property values “head” and “tail” are copied.

• Is this reasonable? What could the user be expecting instead?

Or: We have a singly-linked-list node object, consisting of “item” and “next”.

– What will happen upon deallocation by default? What should happen?
– What will happen upon copying by default? What should happen?

14

Example implementation

Singly linked list of integers as in the sequences-int.zip example:

Interface (abstract class) from Sequence:

– bool empty() const;
– size_t size() const;

– int& front();
– int& back();
– int& at(int i);

– void push_front(const int& in);
– void push_back(const int& in);
– void push(const int& in);
– void insert_at(int idx, const int& in);

– void pop_front();
– void pop_back();
– void pop(const int& in);
– void erase_at(int idx);
– void clear();

class SinglyLinkedList: public Sequence {
public: … // implement all the interface from Sequence
 ~SinglyLinkedList() { this->clear(); }

private:
 SinglyLinkedListNode* head = nullptr;
 SinglyLinkedListNode* tail = nullptr;
};

class SinglyLinkedListNode {
public:
 int& get_item() { return this->item; }
 SinglyLinkedListNode* get_next() const { return this->next; }
 void set_item(int in_item) { this->item = in_item; }

private:
 int item = 0;
 SinglyLinkedListNode* next = nullptr;
 void set_next(SinglyLinkedListNode* in) { this->next = in; }
 friend class SinglyLinkedList;
};

15

Overview: Sequential data structures

– Read/write access to a data item at position k
• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case
• For a doubly linked list, O(min(k, n – k)), which is still effectively O(n)

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists

– Deleting a data item at position k
• For a dynamic array, O(1) at the end, O(n – k) in general
• For a singly linked list, O(1) at the head, or if we have a reference to the

element at position k–1; otherwise, in general, O(k)
• For a doubly linked list, O(1) at the head or tail, or if we have a reference

to that region of the list; in general, O(min(k, n – k))

Remark: For linked lists, insertion/deletion as such takes constant time, once
the node has been localized. However, getting to the node can take O(n) time.

16

Overview: Sequential data structures

– Read/write access to a data item at position k
• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case
• For a doubly linked list, O(min(k, n – k)), which is still effectively O(n)

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists

– Inserting an additional data item at position k
• For a dynamic array, O(n) in the worst case, i.e., whenever the capacity is exhausted;

with free capacity, O(1) at the end, O(n – k) elsewhere
• For a singly linked list, O(1) at the head or tail, or if we have a reference to the

element at position k–1; Otherwise, in general, O(k)
• For a doubly linked list, O(1) at the head or tail, or if we have a reference to that

region of the list; in general, O(min(k, n – k))

Remark: For linked lists, insertion/deletion as such takes constant time, once
the node has been localized. However, getting to the node can take O(n) time.

17

Stacks and queues

– Queues function by the principle “first in, first out” (FIFO)

• Can be implemented using a singly linked list (with a tail reference):
– Attach (enqueue / push) new elements at the tail of the list only
– Detach (dequeue / pop) elements from the head of the list only

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html#queue

18

Stacks and queues

– Stacks function by the principle “last in, first out” (LIFO)

• Can be implemented using a singly linked list:
– Attach (push) new elements at the head of the list only
– Detach (pop) elements from the head of the list only

• Can be implemented using a dynamic array:
– Attach (push) new elements at the end of the array only
– Detach (pop) elements from the end of the array only

– Queues function by the principle “first in, first out” (FIFO)

• Can be implemented using a singly linked list (with a tail reference):
– Attach (enqueue / push) new elements at the tail of the list only
– Detach (dequeue / pop) elements from the head of the list only

All these operations can be carried out in constant time;
in case of the push operation for the dynamic array, subject to capacity.

19

Linked data structures as containers

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html#container

INF205 4th March 2024

Digitalisering på Ås

Institutt for datavitskap

Third worksheet

INF205 4th March 2024

Digitalisering på Ås

Institutt for datavitskap

3 Data structures

3.1 Object orientation
3.2 Inheritance
3.3 Linked data structures
3.4 Containers

Sections 6.1 – 7.2

Core Guidelines:

C.31 – C.33, T.1,
T.2, T.62, T.83

(+ more “C” & “T”)

22

Rule of three

Container objects take ownership, i.e., lifetime and deallocation responsibility.
The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

“Rule of three:” For a container, implement at least
(1) destructor,
(2) copy constructor,
(3) copy assignment operator.

At least implement (1) the destructor!
If (2) and (3) are not there, forbid copying.

Most often you will then also need
to implement (0) a constructor.

23

Ownership

Example: Let us assume that class T
has one property for which it has
ownership, a pointer p to class S that
points to an array of 1000 S elements.

Container objects take ownership, i.e., lifetime and deallocation responsibility.
The programmer needs to take care of this whenever there are data subject to
manual memory management (new and delete) in a self-designed container.

class T
{
public:
 T() { this->p = new S[1000](); }
 ~T() { delete[] this->p; }
 …
private:
 S* p = nullptr;
 …
}

It is typical for the owned content, if
manual memory management needs
to be done, to be allocated in the
constructor, T::T() and/or T::T(…).

T tobject;
T* tpointer = new T;

24

Copying an object

Shallow copy:

Standard copying, such as if there is
no handwritten copy constructor or
copy assignment operator, will
simply copy the value of pointers,
not the content to which they point.

After shallow copying, the content will
exist once in memory. This can be
appropriate when the content is not
owned but just pointed at.

original copydata

Deep copy:

Standard copying, such as if there is
no handwritten copy constructor or
copy assignment operator, will
simply copy the value of pointers,
not the content to which they point.

After deep copying, content exists twice in
memory. Design following the concept of
a “container” that uniquely “owns” its
content requires deep copying.

original copydatadata

25

Fast copying (to implement deep copying)

Element-wise copying

for(int i = 0; i < num_copy; i++) target[i] = source[idx_start + i];

This is slow! Don’t do this for large numbers of elements adjacent in memory.
Also, note that Core Guidelines recommend “size_t” instead of int.

C-style fast copying (apply this only to a traditional C/C++ array)

 #include <cstring>
 …
 std::memcpy(target, source + idx_start, num_copy * sizeof(element_type));

Modern C++ style fast copying (can also be used for STL containers)

 #include <algorithm>
 …
 std::copy(source + idx_start, source + idx_start + num_copy, target);

26

Copy constructor

The copy constructor T::T(const T& orig) is
called when the following two are done at
the same time: (1) allocation of an object,
so that a constructor needs to be called,
and its (2) initialization to the value of a
pre-existing object that continues to exist.

class T
{
public:
 T() { this->p = new S[1000](); }
 T(const T& original) {
 this->p = new S[1000]();
 std::copy(
 original.p, original.p+1000,
 this->p
);
 }
 …
}

// default constructor
T tfirst;
…
// copy constructor
T tsecond = tfirst;

void func(T param) { … }

int main() {
 T tobject;
 …
 // copy constructor
 func(tobject);
}

Examples for when the copy constructor is called:

after running the
copy constructor, the

same content must
exist in memory

twice!

std::copy can be used
for data that are

contiguous in memory

1. Create space for the duplicate.
2. Now write the duplicate into it.

27

Copy assignment operator

The copy assignment operator technically
is an overloaded “=” operator:

class T
{
public:
 T() { this->p = new S[1000](); }
 T& operator=(const T& rhs) {
 if(&rhs == this) return *this;
 delete this->p;
 this->p = new S[1000];
 std::copy(
 rhs.p, rhs.p+1000, this->p
);
 return *this;
 }
 …
}

// default constructor
T tfirst, tsecond;
…
// copy assignment
tsecond = tfirst;

A copy assignment is
done whenever we copy
the value of one variable
to another, both existed
before, and both
continue to exist.

after running the
copy assignment, the

same content must
exist in memory

twice!

T& T::operator=(const T& rhs) { … }

Difference from the copy constructor:
– Object already exists, hence no initial

allocation of memory for content.
– But deallocate pre-existing content.

Note that a reference to *this
needs to be returned.

28

Copy assignment operator

The copy assignment operator technically
is an overloaded “=” operator:

class T
{
public:
 T() { this->p = new S[1000](); }
 T& operator=(const T& rhs) {
 if(&rhs == this) return *this;

 std::copy(
 rhs.p, rhs.p+1000, this->p
);
 return *this;
 }
 …
}

// default constructor
T tfirst, tsecond;
…
// copy assignment
tsecond = tfirst;

A copy assignment is
done whenever we copy
the value of one variable
to another, both existed
before, and both
continue to exist.

after running the
copy assignment, the

same content must
exist in memory

twice!

T& T::operator=(const T& rhs) { … }

Difference from the copy constructor:
– Object already exists, hence no initial

allocation of memory for content.
– But deallocate pre-existing content

if necessary.

INF205 4th March 2024

Digitalisering på Ås

Institutt for datavitskap

Conclusion

304th March 2024INF205

Weekly glossary concepts

What are essential concepts from this lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???

???

???

container

stack (data
structure)

queue

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 4th March 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

3 Data structures

3.1 Object orientation
3.2 Inheritance
3.3 Linked data structures

3.4 Containers
3.5 Graph data structures
3.6 Streams and file I/O

