
INF205 18th March 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Concurrency

4.1 Parallel programming
4.2 Message passing interface
4.3 Domain decomposition

4.4 Robotics middleware
4.5 Concurrency theory
4.6 Parallel process models

218th March 2024INF205

Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

operator
overloading

???
???

???

graph
rule of five

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

318th March 2024INF205

Structure of the course

1) Introduction (week 6)
● Getting started – the lecture last week.

2) C++ programming (weeks 7 and 8)
● Essential features that make C/C++ different from Python; e.g., dealing

with memory allocation and deallocation explicitly, using pointers.

3) Data structures (weeks 9 to 11)
● Linked data structures, containers, C++ standard template library.
● Memory management for container data structures.

4) Concurrency (week 12 to 17)
● MPI and ROS2 for parallel programming and concurrent processes.

5) Production and optimization (week 18 and 19)
● Good practices and useful tools for programming projects.

INF205 18th March 2024

Digitalisering på Ås

Institutt for datavitskap

4 Concurrency

4.1 Parallel programming

5

Paradigms of parallel programming

one many
“instruction”

SISDone

many

single instruction, single data
MISD

multiple instructions, single data

concurrency
analysis

Partitioned global
address space (PGAS)

DB and knowledge
base applications

web
services

enterprise
systems

workflow
management

SIMD
single instruction, multiple data

MIMD
multiple instructions, multiple data

agent-based
systems

distributed
systems

message passing
interface (MPI)

task-based
parallelization

streams

“data” streams

X-”instruction” x-”data” taxonomy as devised by Flynn:1

1M. J. Flynn, IEEE Transact. Comput. C-21(9): 940–960, doi:10.1109/tc.1972.5009071, 1972.

timesharing

processes in an
operating system

vector operations
(e.g., AVX)

OpenMP

data
pipelines

load balancing

domain
decomposition

(shared on Canvas: flynn_1972.pdf)

https://dx.doi.org/10.1109/tc.1972.5009071

6

Software vs. hardware architecture

hardware
(architecture)

software
(code)

shared memoryno shared memory

shared
memory

message
passing

some shared
memory

part, part

MPI
“Message Passing Interface”

OpenMP
“Open Multiprocessing”

Hybrid parallelization (MPI + OpenMP)

PGAS languages
partitioned global

address space

ROS
“Robot Operating System”

7

Amdahl’s law

Assume a scenario where we can split a code into a fraction f that can be
parellelized and the remainder 1 – f that is always sequential, never parallel.

Adding two vectors c[i] = a[i] + b[i], for i from 0 to 99 999, can be parallelized.
Waiting for new instructions from the user cannot be parallelized.

Speedup is the factor by which runtime decreases; here, due to parallelization.

Amdahl’s law:
– Runtime with a single process is given by some t1 = (1 – f) t1+ f t1.

– Now assume that we are parallelizing the code as perfectly as possible:

• With n parallel processes, the runtime becomes tn = (1 – f) t1+ f t1/n.

– Now assume that we have infinite computing resources at our hands:

• With infinite parallel processes, the runtime becomes t∞ = (1 – f) t1.

– The maximum possible speedup for our code is S∞ = t∞/t1 = 1 / (1 – f).

If f = 99% can be parallelized, speedup can never be greater than S∞ = 100.

8

Parallel performance (“scaling”) tests

In most cases, discussion of computational resources limits itself to “space”
and “time.” This is also motivated by tradition in theoretical computer science.
In practice, then, time usually becomes the main performance metric, whereas
space becomes the main bottleneck (memory access, communication, file I/O).

Strong scaling (Amdahl, constant problem size) on parallel architectures:
– Runtime reduction as number of processes increases (ideally, linear).
– Total CPU time increase as there are more processes (ideally, none).
– Rate of CPU operations (e.g., FLOP/s) as fraction of peak performance.
– Amdahl’s law: Deterioration of performance at some point is inevitable.

Weak scaling (Gustafson, proportional problem size) on parallel architectures:
– CPU time per problem size as problem and core usage are scaled up.
– Runtime increase during the scale-up.
– Rate of CPU operations (e.g., FLOP/s) as fraction of peak performance.
– Some algorithms and codes don’t show a major decay in these metrics.

9

Parallelization based on message passing

Message passing is the most general paradigm of parallel programming.

Message passing does not require that processes (also called ranks in MPI)
are executed on the same computing node and have shared memory access.
It only assumes that they can exchange messages.

Challenges of message passing based parallelization:

– Idle time while processes are engaged in blocking communication.
– What if there are very many processes, do they all message each other?

– What if the recipient would already have had access to the data?
– Processes need to figure out what information they must give to others.

In high performance computing, message-passing based parallelization is
usually done using MPI, the message passing interface.

INF205 18th March 2024

Digitalisering på Ås

Institutt for datavitskap

Course schedule and
fourth worksheet

11

Course schedule for the coming weeks

Week 12 (17th – 23rd March 2024):

– Monday, 18th March 2024:
• 1st lecture on concurrency
• 4th worksheet released

– Wednesday, 20th March 2024:
• Tutorial session
• Programming project opened

Week 13 (24th – 30th March 2024):

– No teaching
– Sign-up for presentation

slots (fourth worksheet)

Week 14 (31st March – 6th April 2024):

– No lecture (Easter Monday)

– Tuesday, 2nd April 2024:
Submission deadline for the 4th
worksheet

– Wednesday, 3rd April 2024:
Discussion of the 4th worksheet

Week 15 (7th – 13th April 2024):

– Monday, 8th April 2024:
• 2nd lecture on concurrency
• 5th worksheet released

– Wednesday, 10th April 2024:
Tutorial session

INF205 18th March 2024

Digitalisering på Ås

Institutt for datavitskap

Info on the
programming project

13

Topic 1 code example: N-queens problem (variants)

./random-config-debug 12 12 12

2 with x = 2. (Contribution: 2).
3 with x = 3. (Contribution: 4).
5 with x = 8. (Contribution: 8).

4 with y = 3. (Contribution: 6).
2 with y = 4. (Contribution: 2).
2 with y = 11. (Contribution: 2).

2 with x+y = 6. (Contribution: 2).
3 with x+y = 12. (Contribution: 4).
2 with x+y = 14. (Contribution: 2).

2 with x-y = 2. (Contribution: 2).
==
Threats counted: 34.

Example file: queens-count-threats.zip

11 ♕ ♕
10

9

8

7 ♕
6 ♕
5

4 ♕ ♕
3 ♕ ♕ ♕ ♕
2

1 ♕
0 ♕

0 1 2 3 4 5 6 7 8 9 10 11

14

Topic 2 code example: Configurations of spheres

Periodic boundary condition (PBC) Minimum image convention (MIC)

0
1

2

3
4

0’

4’

interact, count for potential (e.g., overlaps)
interact, don’t count for potential
don’t interact

PBC: Assume that the simulation box
repeats periodically in all directions.

MIC: Each particle interacts only with
closest replica of each other particle.

15

Topic 2 code example: Configurations of spheres

See implementation in repulsive-spheres.zip, sphere.cpp, line 51.

dist(i, j) ≥ (σi + σj)/2 dist(i, j) < (σi + σj)/4anything in between

one overlapno overlap counts as eight

int Sphere::check_overlap(const Sphere* other, const double box_size[3]) const
{
 // square distance between the centre of i and the centre of j
 double square_distance = 0.0;
 for(int d = 0; d < 3; d++) {
 double dist_d = other->coords[d] - this->coords[d];

 // apply minimum image convention
 if(dist_d > 0.5*box_size[d]) dist_d -= box_size[d];
 else if(dist_d < -0.5*box_size[d]) dist_d += box_size[d];

 square_distance += dist_d*dist_d;
 }

 // is the square distance smaller than the square of the sum of radii?
 double sum_of_radii = 0.5 * (this->size + other->size);
 int overlap = 0;
 if(square_distance < 0.25*sum_of_radii*sum_of_radii) overlap = 8; // soft shielding
 else if(square_distance < sum_of_radii*sum_of_radii) overlap = 1; // normal overlap
 return overlap;
}

rij

uij

σij /2 σij

1

8

σij = (σi + σj)/2
“Lorentz mixing rule”

pair potential

16

Other problems – and using libraries

Should we use external libraries, or should we develop all from scratch?

– It is one of the learning outcomes to work with external libraries.
– But we have seen that even the STL can be sometimes beaten by

simple bespoke code that you write yourself for a special purpose.
– With your project code you are meant to demonstrate what you have

learnt. Your own development must not be totally trivial.

If you are reusing a complicated algorithm, data structure, or file format, going
beyond the content of INF205, and there is a library, just use the library!

How about other special-interest problems?

– It is a good idea to work on special problems that you are interested in.
– Provide a clear description as part of your submission to worksheet 4.
– We will need a well-defined benchmark, and discussions to specify it in

a clear way, and I need to understand it well enough to grade it.

17

Reuse of external code

Are you legally allowed to use external code?
– You need a license; which is it? Check its terms and conditions.

• Some licenses, even if they allow you to reuse the code and create
derivative works, cannot be combined with each other.

• For example, the GPL and CC NC licenses cannot be combined.
• To alleviate this issue, libraries are often released under the LGPL.

How about the code examples from the INF205 lecture material?
– Released under the conditions of the CC BY-NC-SA 4.0 License.

Would it not be plagiarism or fraud to submit others’ material?
– It is, if you submit others’ developments as if they were your own.
– If it is not absolutely clear from your submission that you are reusing

somebody else’s work (when you actually are), it may be a fraud attempt.
– That is also the case for the lecture material; it must be documented,

e.g., for clarity in case it goes to an appeals examiner (klagesensor).

https://creativecommons.org/licenses/by-nc-sa/4.0/

INF205 18th March 2024

Digitalisering på Ås

Institutt for datavitskap

4 Concurrency

4.1 Parallel programming
4.2 Message passing

19

MPI: Getting started

The target systems of MPI programs are often clusters with thousands of cores.

However, the code is not usually developed on these systems, but on the
programmers’ usual working environment. Even on a laptop/workstation, MPI
makes you realize a speedup, since today these are all multicore systems.

To get started install an MPI environment, e.g., Open MPI (package openmpi).

The compiler command becomes “mpiCC …” or similar (instead of “g++ …”).
The binary executable produced by the compiler will not run on its own!

Instead: mpirun -np <number of processes> <executable>

This creates a number of parallel processes with ranks starting from 0.
Often the process with rank 0 takes the role of the “master” or “scheduler”.

See also the Open MPI documentation: https://docs.open-mpi.org/en/v5.0.x/

20

MPI rank (own number) and size (total number)

An MPI program needs to initialize and finalize the MPI environment.
Every process needs to know its rank (and, usually, the number of processes).

#include <mpi.h>

int main(int argc, char** argv)
{
 MPI_Init(&argc, &argv);

 int rank = 0; // what is the rank of this process?
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 int size = 0; // how many processes are there?
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 … // here comes the actual program

 MPI_Finalize();
}

Often the rank no. of a process,
together with the number of
processes, is already enough
input to implement a basic
parallelization scheme.

This is also the case for our
prime-number test example:

5 7 11 13 17 19 23 …
0 0 1 1 2 2 3 …

From the documentation: “Open MPI accepts the
C/C++ argc and argv arguments to main, but
neither modifies, interprets, nor distributes them”.

Example file: mpi-primes.zip

21

MPI send and receive

The most basic communication step is send/receive from one rank to another.

int MPI_Send(
 void* content, int count, MPI_Datatype type,
 int destination_rank, int tag, MPI_Comm handle
);

int MPI_Recv(
 void* buffer, int count, MPI_Datatype type,
 int source_rank, int tag, MPI_Comm handle,
 MPI_Status* status);

content is the address from which the source
data are read; it is often an array, but can also
be a pointer to a single data item

buffer is an address to which the received
data can be written; the programmer needs
to take care of memory allocation, etc.

count is the number of data items

type is their type as an MPI environment expression
(e.g., MPI_SHORT_INT, MPI_INT64_T, MPI_FLOAT, …)

tag is an identifier; send and receive must have the same tag

destination_rank is the rank of the process
with the matching MPI_Recv(…) operation

source_rank is the rank of the process with
the matching MPI_Send(…) operation

(Standard values from handle and status are MPI_COMM_WORLD and MPI_STATUS_IGNORE.)

22

MPI ping-pong example

if(rank == 0)
 MPI_Send(&(++counter), 1, MPI_INT64_T, 1, 1, MPI_COMM_WORLD);

if(rank == 1)
 MPI_Recv(
 &buffer, 1, MPI_INT64_T, 0, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE
);

the tag for send and receive must be the same

“write 1 item of type
int64_t to &buffer”

“increment counter, then read 1 item
of type int64_t from &counter”

“send it to rank 1”

“receive it from rank 0”

One of the processes (say, rank 0) will reach the send/receive first.
Blocking communication: That process is idle, waiting for the other process.

rank 0

rank 1

MPI_Send … … … (idling)

“Acknowledging” (MPI_Recv or buffer)

Example file: pingpong.zip

23

Stream-based serialization of data

Observation:
– It is not straightforward to unwrap

more complex data structures.
– We were already using streams for

serialization, in particular file I/O.
– The same stream serialization can

be used to transfer objects via MPI.

Prerequisite: The input and output methods (and operators) must be aligned.

std::istream& operator>>(
 std::istream& is, Graph& g
) {
 g.in(&is);
 return is;
}
std::ostream& operator<<(
 std::ostream& os, const
Graph& g
) {
 g.out(&os);
 return os;
}

overloaded operators

If a stringstream s is used to store the data, the
method s.str().c_str() can be used for sending
a char array, e.g., with MPI_Send.

Size in characters: s.str().size() // +1 for '\0'

attention, pitfall!

Example file: graph.cpp (in graph-stream.zip archive)

24

Stream-based serialization of data

 if(rank == 0) {
 // open in-filestream
 std::ifstream indata(argv[1]);

 // read graph object from file
 indata >> g;
 indata.close();

 // write into stringstream
 std::stringstream text << g;

 // inform recipient about content size
 message_size = text.str().size() + 1;
 MPI_Send(
 &message_size, 1, MPI_INT,
 1, 1, MPI_COMM_WORLD
);

 // send content to recipient
 MPI_Send(
 text.str().c_str(), message_size,
 MPI_CHAR, 1, 2, MPI_COMM_WORLD
);
 }

 if(rank == 1) {
 // get information about the content size
 MPI_Recv(
 &message_size, 1, MPI_INT, 0, 1,
 MPI_COMM_WORLD, MPI_STATUS_IGNORE
);

 // allocate buffer and receive the content
 char* buffer = new char[message_size]();
 MPI_Recv(
 buffer, message_size, MPI_CHAR,
 0, 2, MPI_COMM_WORLD,
 MPI_STATUS_IGNORE
);

 // write into stringstream
 std::stringstream text << buffer;
 delete[] buffer;
 buffer = nullptr;

 // read graph object from stringstream
 text >> g;
 }

message
tag 1

message
tag 2

Example file: copy-graph-demo.cpp (in graph-stream.zip archive)

2518th March 2024INF205

Collective communication

Send/receive is done from one sender process to one recipient process.
In a collective communication step, all the MPI ranks participate jointly.

– Broadcast: MPI_Bcast(buffer, count, type, root, handle)
After the broadcast, all processes’ buffers contain the value that used to be
in the buffer of the root process. Rank 0 is often used as the root process.

– Scatter: MPI_Scatter(content, count, type, buffer, count, type, root, handle)
Like broadcast, but content is split (scattered) over the recipients’ buffers.

– Reduce: MPI_Reduce(content, buffer, count, type, operation, root, handle)
Content from all the processes is aggregated into the buffer of the root
process. For example, add up all the values (with MPI_SUM as operation).

– Gather: MPI_Gather(content, count, type, buffer, count, type, root, handle)
The gather operation is the opposite of scatter. Split content from all
processes is written into one big buffer at the root process.

26

Collective communication

Scattering content[15] to local_chunk[3].
rank 0: 'a' 'b' 'c'
rank 1: 'd' 'e' 'f'
rank 2: 'g' 'h' 'i'
…

Gathering using MPI_Gather.
rank 0: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 1: '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''
rank 2: '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''
…

Reducing local chunks into 'reduced' using MPI_Reduce with MPI_MAX.
rank 0: 'm' 'n' 'o'
rank 1: '' '' ''
rank 2: '' '' ''
…

Gathering operation (all ranks to the root rank):
– MPI_Gather(local_chunk, 3, MPI_CHAR, content, 3, MPI_CHAR, 0, …)

Scatter operation (all ranks to the root rank):
– MPI_Reduce(local_chunk, reduced, 3, MPI_BYTE, MPI_MAX, 0, …)

 Name Meaning
 __________ ___________________
 MPI_MAX maximum
 MPI_MIN minimum
 MPI_SUM sum
 MPI_PROD product
 MPI_LAND logical and
 MPI_BAND bit-wise and
 MPI_LOR logical or
 MPI_BOR bit-wise or
 MPI_LXOR logical xor
 MPI_BXOR bit-wise xor
 MPI_MAXLOC max value, location
 MPI_MINLOC min value, location

Example file: collective-communication.zip

27

Collective communication

Scattering content[15] to local_chunk[3].
rank 0: 'a' 'b' 'c'
rank 1: 'd' 'e' 'f'
rank 2: 'g' 'h' 'i'
…

Gathering using MPI_Allgather.
rank 0: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 1: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 2: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
…

Reducing local chunks into 'reduced' using MPI_Allreduce with MPI_MAX.
rank 0: 'm' 'n' 'o'
rank 1: 'm' 'n' 'o'
rank 2: 'm' 'n' 'o'
…

Gathering operation (all ranks to all ranks):
– MPI_Allgather(local_chunk, 3, MPI_CHAR, content, 3, MPI_CHAR, …)

Scatter operation (all ranks to all ranks):
– MPI_Allreduce(local_chunk, reduced, 3, MPI_BYTE, MPI_MAX, …)

 Name Meaning
 __________ ___________________
 MPI_MAX maximum
 MPI_MIN minimum
 MPI_SUM sum
 MPI_PROD product
 MPI_LAND logical and
 MPI_BAND bit-wise and
 MPI_LOR logical or
 MPI_BOR bit-wise or
 MPI_LXOR logical xor
 MPI_BXOR bit-wise xor
 MPI_MAXLOC max value, location
 MPI_MINLOC min value, location

Example file: collective-communication.zip

2818th March 2024INF205

Synchronization

MPI_BarrierMPI_BarrierMPI_Barrier

MPI_Barrier(comm) enforces synchronization between all processes.

Example: Make all processes output some array content in order.

rank 1

rank 0

rank 2

rank 3

rank 4

do output

do output

do output

do output

do output

MPI_Barrier

for(int i = 0; i < rank; i++) MPI_Barrier(MPI_COMM_WORLD);
std::cout << …;
for(int i = rank; i < size; i++) MPI_Barrier(MPI_COMM_WORLD);

INF205 18th March 2024

Digitalisering på Ås

Institutt for datavitskap

Conclusion

3018th March 2024INF205

Weekly glossary concepts

What are essential concepts from this lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???

???

???

concurrency

synchronization

Amdahl’s law

Bokmål: “Samtidighet”

Nynorsk: (not found)

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://data.ub.uio.no/skosmos/realfagstermer/nb/page/c007971?clang=nn
https://data.ub.uio.no/skosmos/realfagstermer/nb/page/c007971?clang=nn
https://data.ub.uio.no/skosmos/realfagstermer/nb/page/c007971?clang=nn

INF205 18th March 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Concurrency

4.1 Parallel programming
4.2 Message passing interface
4.3 Domain decomposition

4.4 Robotics middleware
4.5 Concurrency theory
4.6 Parallel process models

