
INF205 8th April 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Concurrency

4.1 Parallel programming
4.2 Message passing interface
4.3 Domain decomposition

4.4 Robotics middleware
4.5 Concurrency theory
4.6 Parallel process models

28th April 2024INF205

Weekly glossary concepts

What are essential concepts from this lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???

???

???

concurrency

synchronization

Amdahl’s law

Bokmål: “Samtidighet”

Nynorsk: (not found)

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://data.ub.uio.no/skosmos/realfagstermer/nb/page/c007971?clang=nn
https://data.ub.uio.no/skosmos/realfagstermer/nb/page/c007971?clang=nn
https://data.ub.uio.no/skosmos/realfagstermer/nb/page/c007971?clang=nn

38th April 2024INF205

Software vs. hardware architecture

hardware
(architecture)

software
(code)

shared memoryno shared memory

shared
memory

message
passing

some shared
memory

part, part

MPI
“Message Passing Interface”

OpenMP
“Open Multiprocessing”

Hybrid parallelization (MPI + OpenMP)

PGAS languages
partitioned global

address space

ROS
“Robot Operating System”

48th April 2024INF205

MPI ping-pong example

if(rank == 0)
 MPI_Send(&(++counter), 1, MPI_INT64_T, 1, 1, MPI_COMM_WORLD);

if(rank == 1)
 MPI_Recv(
 &buffer, 1, MPI_INT64_T, 0, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE
);

the tag for send and receive must be the same

“write 1 item of type
int64_t to &buffer”

“increment counter, then read 1 item
of type int64_t from &counter”

“send it to rank 1”

“receive it from rank 0”

One of the processes (say, rank 0) will reach the send/receive first.
Blocking communication: That process is idle, waiting for the other process.

rank 0

rank 1

MPI_Send … … … (idling)

“Acknowledging” (MPI_Recv or buffer)

Example file: pingpong.zip

5

Collective communication

Send/receive is done from one sender process to one recipient process.
In a collective communication step, all the MPI ranks participate jointly.

– Broadcast: MPI_Bcast(buffer, count, type, root, handle)
After the broadcast, all processes’ buffers contain the value that used to be
in the buffer of the root process. Rank 0 is often used as the root process.

– Scatter: MPI_Scatter(content, count, type, buffer, count, type, root, handle)
Like broadcast, but content is split (scattered) over the recipients’ buffers.

– Reduce: MPI_Reduce(content, buffer, count, type, operation, root, handle)
Content from all the processes is aggregated into the buffer of the root
process. For example, add up all the values (with MPI_SUM as operation).

– Gather: MPI_Gather(content, count, type, buffer, count, type, root, handle)
The gather operation is the opposite of scatter. Split content from all
processes is written into one big buffer at the root process.

6

Collective communication

Scattering content[15] to local_chunk[3].
rank 0: 'a' 'b' 'c'
rank 1: 'd' 'e' 'f'
rank 2: 'g' 'h' 'i'
…

Gathering using MPI_Allgather.
rank 0: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 1: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 2: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
…

Reducing local chunks into 'reduced' using MPI_Allreduce with MPI_MAX.
rank 0: 'm' 'n' 'o'
rank 1: 'm' 'n' 'o'
rank 2: 'm' 'n' 'o'
…

Gathering operation (all ranks to all ranks):
– MPI_Allgather(local_chunk, 3, MPI_CHAR, content, 3, MPI_CHAR, …)

Scatter operation (all ranks to all ranks):
– MPI_Allreduce(local_chunk, reduced, 3, MPI_BYTE, MPI_MAX, …)

 Name Meaning
 __________ ___________________
 MPI_MAX maximum
 MPI_MIN minimum
 MPI_SUM sum
 MPI_PROD product
 MPI_LAND logical and
 MPI_BAND bit-wise and
 MPI_LOR logical or
 MPI_BOR bit-wise or
 MPI_LXOR logical xor
 MPI_BXOR bit-wise xor
 MPI_MAXLOC max value, location
 MPI_MINLOC min value, location

Example file: collective-communication.zip

7

Collective communication

What MPI operation(s) would we use for the following?

– There are n processes (ranks).

– Each rank generates k = 65536 floating-point
random numbers between 0 and 1.

– Now there are k·n random numbers. We would
like all of them together to become a unit
vector x = (x0, …, xkn–1) such that x2 = 1.

– We definitely don’t want to send all the values
to all processes, especially if k becomes even
greater, but do this as efficiently as possible.

Discussed MPI
operations

MPI_Send
MPI_Recv

MPI_Wait

MPI_Bcast
MPI_Scatter
MPI_Reduce
MPI_Gather

MPI_Allgather
MPI_Allreduce

MPI_Isend
MPI_Irecv

MPI_Test

MPI_Ibcast
MPI_Iscatter
MPI_Ireduce
MPI_Igather

MPI_Iallgather
MPI_Iallreduce

(See unit-vector-incomplete.cpp, where the implementation is missing.)

https://home.bawue.de/~horsch/teaching/inf205/material/unit-vector-incomplete.cpp

INF205 8th April 2024

Digitalisering på Ås

Institutt for datavitskap

4 Concurrency

4.1 Parallel programming
4.2 Message passing
4.3 Domain decomposition

9

Space-like concurrency in the data

Domain decomposition is characterized by two features:
First, parallelization is based on the concurrency inherent in (some) data.
Second, these data are seen as constituting a space, or as located in a space.

load weather
warnings for A0

A B C D

0

1

2

3

load current
plane positions

load weather
warnings for C1

load weather
warnings for D3

load weather
warnings for C2

…

…

warn planes in
A0 if needed

warn planes in
C1 if needed

warn planes in
D3 if needed

warn planes in
C2 if needed

…

…

10

Example: Three-dimensional box

global 3D system
containing all the
“original” versions

of the particles

one of the local boxes
into which the system is

divided for parallelization

halo region of the loxal box:
the process is not responsible

for this information, but
needs to know it

In the sphere-config-par.zip
example, a 3D domain
decomposition is implemented:

 int remainder = rank;
 boxrank[0] = remainder /
 (boxes[1] * boxes[2]);
 remainder -= boxrank[0] *
 boxes[1] * boxes[2];
 boxrank[1] = remainder / boxes[2];
 remainder -= boxrank[1] * boxes[2];
 boxrank[2] = remainder;

subdomain from MPI rank:

Example file: sphere-config-par.zip

11

Example: Three-dimensional box

Attention: For a single particle read in from the input file,
multiple copies can now exist in several ranks.
(In our implementation, these have the same particle ID.)

rank 0 (top left)
needs a version
of this particle

in its halo

rank 1 (top right)
has the main

responsibility for
the object

rank 3 (bottom right)
has a periodic copy of
the particle in its halo

rank 2 (bottom left)
has a periodic copy of
the particle in its halo

1. If an object is updated or moved, adjacent ranks may need to be informed.
2. Attention not to double-count objects, or pairs; see Box::count_overlaps().

2D representation

here just because

the slide is two-

dimensional

Example file: sphere-config-par.zip

12

How to run the parallel code on Orion

– Login via ssh inf205-22-xx@login.orion.nmbu.no.
– Documentation available at https://orion.nmbu.no/.

– You must be on the VPN (https://na.nmbu.no/) to access any of these.

Advice on the login process:

– Create a folder ~/.ssh on the remote system (login.orion.nmbu.no).

– Copy your local ssh public key to ~/.ssh/authorized_keys.
• If you don’t have one, create it with the command ssh-keygen.

– You can now use ssh and scp without entering your password.

– For all temporary storage on Orion, use the folder $SCRATCH.

Sample instructions: protocol-orion_ssh.txt

https://orion.nmbu.no/
https://na.nmbu.no/
https://home.bawue.de/~horsch/teaching/inf205/material/protocol-orion_ssh.txt

13

How to run the parallel code on Orion

Sample instructions: protocol-orion_compile-and-run.txt

Modules: On Orion, you need to load modules to select your favourite
environment. To load OpenMPI, the command is module load OpenMPI.

Scratch folder and home folder: Do not use your home directory for single-
use files or any very large data. These should go on $SCRATCH.

Don’t run jobs on the login node: Never make this mistake! It will slow down
all other users’ work on the login node, and they will get angry.

Do run jobs via bash scripts (batch files) and the submission command qsub.

– Login via ssh inf205-22-xx@login.orion.nmbu.no.
– Documentation available at https://orion.nmbu.no/.

– You must be on the VPN (https://na.nmbu.no/) to access any of these.

https://home.bawue.de/~horsch/teaching/inf205/material/protocol-orion_compile-and-run.txt
https://orion.nmbu.no/
https://na.nmbu.no/

14

How to run the parallel code on Orion

#!/bin/bash
#SBATCH --tasks-per-node=24
#SBATCH --nodes=2
#SBATCH --time=00:01:00
#SBATCH --job-name=sphere-test-job
#SBATCH --partition=smallmem
#SBATCH --mail-user=XXXXXX.XXXXXX@nmbu.no
#SBATCH --mail-type=ALL

cd /mnt/SCRATCH/inf205-2024-XX/sphere-test-job

module load OpenMPI

mpirun -np 48 /mnt/users/inf205-2024-XX/bin/eval-par 32768-particles.dat 3.334 3 4 4

Example file: sphere-test-job.qsub

The following file can be submitted to the Slurm scheduler using “qsub”.
See also the overview file: pbs-to-slurm-translation-sheet.pdf.

https://home.bawue.de/~horsch/teaching/inf205/material/sphere-test-job.qsub
https://www.nrel.gov/hpc/assets/pdfs/pbs-to-slurm-translation-sheet.pdf

INF205 8th April 2024

Digitalisering på Ås

Institutt for datavitskap

Fifth worksheet

http://home.bawue.de/~horsch/teaching/inf205/lab/inf205-5.html

INF205 8th April 2024

Digitalisering på Ås

Institutt for datavitskap

4 Concurrency

4.1 Parallel programming
4.2 Message passing
4.3 Domain decomposition

related technique: Linked cells

17

Linked cell data structure

Objective: Deal with interactions between objects that are close to each other
(“short-range interactions”) in a Cartesian space, without testing O(n2) pairs.

Idea: Divide an area or volume into interconnected cells, and sort interacting
objects into these cells according to their coordinates.

Assuming that the density of objects has an
upper bound to to the nature of the problem,
processing all interacting pairs is now in O(n)
instead of O(n2), once the objects are in cells.

Sequentially, with a single process, this works
just as well as in parallel. Being connected by
the same logic, it is very common to combine
linked cells with domain decomposition for
particle-based methods.

18

Molecular dynamics world record

1N. Tchipev, S. Seckler, M. Heinen, J. Vrabec, F. Gratl, M. Horsch, M. Bernreuther,
 C. W. Glass, C. Niethammer, N. Hammer, B. Krischok, M. Resch, D. Kranzlmüller,
 H. Hasse, H.-J. Bungartz, P. Neumann, Int. J. HPC Appl. 33(5), 838 – 854, 2019.

212210282624222220

number of employed nodes of the cluster

weak scaling on SuperMUC

weak scaling

strong scaling

G
FL

O
P

/s
 p

er
 n

o
d

e

100

200

(cores per node: 24 for Hazel Hen, 16 for SuperMUC)

N = 21 000 000 000 000

2019 molecular dynamics world record1

(weak scaling performance of 88% on 7168 nodes)

Hazel Hen
weak scaling

Hazel Hen (Stuttgart):
Haswell architecture

http://www.ls1-mardyn.de/ (large systems 1: molecular dynamics)

https://doi.org/10.1177/1094342018819741

INF205 8th April 2024

Digitalisering på Ås

Institutt for datavitskap

4 Concurrency

4.1 Parallel programming
4.2 Message passing
4.3 Domain decomposition

… or embarassing parallelism?

20

Depth-first search + backtracking

Consider the chessboard example.

– A typical domain decomposition would split up the board into regions.
– Instead, we can split up the state space,1 the space of configurations.

1The state space can be called a configuration space. That is particularly the case when it
consists of variables describing the positions of objects.

Assume that we have 2k MPI ranks, for example, four ranks.
Now select k = 2 fields at random, for example A = (2, 5) and B = (0, 1).

MPI rank 0: No queens on A and B.

7 ♕
6 ♕
5 ♕
4

3 ♕
2

1 ♕ ♕
0 ♕

0 1 2 3 4 5 6 7

MPI rank 1: Queen on A, but not on B.

7

6 ♕
5 ♕
4 ♕
3 ♕
2

1 ♕ ♕
0

0 1 2 3 4 5 6 7

MPI rank 3: Queens on both A and B.

7 ♕
6

5 ♕
4 ♕
3

2 ♕
1 ♕
0

0 1 2 3 4 5 6 7

MPI rank 2: Queen on B, but not on A.

7 ♕
6 ♕
5 ♕
4

3

2 ♕
1 ♕
0 ♕

0 1 2 3 4 5 6 7

21

Monte Carlo (MC) methods

High-dimensional state spaces: If many variables q1, …, qk are needed to

describe a system’s state, this means that the state space1 is high-dimensional.

– In our problem with N spherical particles, we are exploring a 3N-
dimensional configuration space.

– For N queens on a board, the configuration space is 2N-dimensional.

In Monte Carlo (MC) methods, these different variables are typically fused into
one high-dimensional vector q, the configuration.

MC methods are efficient at solving an otherwise untractable problem: The
average value of some quantity f (q) over the whole state space.

1The state space can be called a configuration space. That is particularly the case when it
consists of variables describing the positions of objects. In statistical mechanics, it is common
to consider positions and momenta (or velocities) together as what is called the phase space.

22

Monte Carlo (MC) methods

Most elementary and original MC method: Select m independent, uniformly
distributed random sample configurations out of the state space.

– The result is the average of f (q) over the random samples, computed as
an approximation for the average over the whole state space.

– Classical illustration of the idea: Opinion poll done on random people.

MC methods are efficient at solving an otherwise untractable problem: The
average value of some quantity f (q) over the whole state space.

– Example: How many threats between queens are there on average?

– How would we need to change the queens-count-threats.zip code to
do this? How much more efficient is the MC approach, compared to
going through all the possible configurations?

23

Problems addressed by MC methods

Most elementary and original MC method: Select m independent, uniformly
distributed random sample configurations out of the state space.

– The result is the average of f (q) over the random samples, computed as
an approximation for the average over the whole state space.

– Classical illustration of the idea: Opinion poll done on random people.

Often we are interested in weighted averages, looking at a quantity ρ (q) f (q).
The weight function ρ (q) can have a role such as the probability of a state.1
Then it can happen that almost all values from a uniform sample have ρ (q) ≈ 0.

In such cases, the Metropolis method is used:

– Change configuration q by a random small amount, yielding some q’.
• Accept the change with 100% probability if ρ (q’) > ρ (q).
• Otherwise, accept the change with the probability ρ (q’) / ρ (q).

1Then, ρ(q) is called the density of the state space, or the configuration or phase space density.

248th April 2024INF205

Markov chains: Monte Carlo method(s)

A Markov chain is a sequence of states in a probabilistic discrete event system.

Processes/threads can explore the
state space separate from each
other. They work with independent
configurations. It is not necessary to
implement a domain decomposition.

The sequence of configurations in a Metropolis Monte Carlo simulation is such
a Markov chain. So are many variants of it, or other common solutions to
problems that require the stochastic exploration or sampling of a large space.

The concurrency here is due to that multiple Markov chains are independent.

1/3

1/3
2/3

2/3a b
abbabbbaaba …

start
ababbaaabba …

258th April 2024INF205

MC simulation as a sampling technique

The MC method comes from statistical mechanics, where systems are often
considered at a given temperature T. In statistical mechanics, the phase space
density of a system at thermal equilibrium with its surroundings (constant T) is

ρ (q) = exp(–U / T),

where U(q) is the internal energy as a function of the system’s state. When only
positions are considered (not velocities), this is the potential energy Upot(q).

This can be used as a sampling technique even where “temperature” has no
natural meaning. The temperature then becomes a parameter of the method.

Discussion: Can we use this to speed up finding a desired configuration on a
chess board? We need to select a potential Upot, such as the number of threats.

INF205 8th April 2024

Digitalisering på Ås

Institutt for datavitskap

E-R diagrams on draw.io

27

E-R diagrams on draw.io and Chowlk1, 2

1M. Poveda Villalón et al., in Proc. VOILA23, CEUR Works. Proc. 3508: 2 (link to paper), 2023.

2Chowlk template: https://chowlk.linkeddata.es/static/resources/chowlk-library-complete.xml

 Lightweight version: https://chowlk.linkeddata.es/static/resources/chowlk-library-lightweight.xml

The draw.io tool can be used for E-R diagrams using a variety of conventions.

With Chowlk by Poveda Villalón et al.,1, 2 these can be converted to ontologies.

https://ceur-ws.org/Vol-3508/paper2.pdf
https://chowlk.linkeddata.es/static/resources/chowlk-library-complete.xml
https://chowlk.linkeddata.es/static/resources/chowlk-library-lightweight.xml
https://chowlk.linkeddata.es/examples.html

INF205 8th April 2024

Digitalisering på Ås

Institutt for datavitskap

Conclusion

298th April 2024INF205

Weekly glossary concepts

What are essential concepts from the previous lecture?

Let us include them in the INF205 glossary.1

1https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

???
???

???
state space

embarrassing
parallelism

domain
decomposition

https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html
https://home.bawue.de/~horsch/teaching/inf205/glossary-en.html

INF205 8th April 2024

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Concurrency

4.1 Parallel programming
4.2 Message passing interface
4.3 Domain decomposition

4.4 Robotics middleware
4.5 Concurrency theory
4.6 Parallel process models

