
INF205 11th March 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Concurrency

4.1 Parallel programming 4.4 Robotics middleware
4.2 MPI 4.5 Concurrency theory
4.3 Performance metrics 4.6 Process models

211th March 2025INF205

ROS 2 package creation

A ROS2 C++ package for compilation supported by cmake can be created by

ros2 pkg create --build-type ament_cmake prjname --dependencies rclcpp …

This creates a package XML file and an input file for cmake.
XSD metadata schema http://download.ros.org/schema/package_format3.xsd

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
 <name>prjname</name>
 …
 <license>CC BY-NC-SA</license>
 <buildtool_depend>ament_cmake</buildtool_depend>
 <depend>rclcpp</depend>
 …
</package>

package.xml

1http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

… for the example,1 add example_interfaces here

example:1 <depend>example_interfaces</depend>

e.g. cpp_srvcli

Material: ros-nodes-howto.zip.

http://download.ros.org/schema/package_format3.xsd
http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

311th March 2025INF205

Example1

How to test the ros-nodes-example:

– Compile the client and server codes using “colcon” (which calls cmake).
• You may need to install cmake first.

– Run “server” on one terminal (or one computer in the network).
– Run “client x y” on another.
– They should interact, and the addition x+y should be performed.

Disclaimer: If you use ROS 2 for your work and it leads to a publication (or
master thesis), include a citation to the reference S. Macenski et al., Science
Robotics 7(66): eabm6074, doi:10.1126/scirobotics.abm6074, 2022.

Material: ros-nodes-howto.zip.

1http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

http://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Service-And-Client.html

4

Collective communication

Send/receive is done from one sender process to one recipient process.
In a collective communication step, all the MPI ranks participate jointly.

– Broadcast: MPI_Bcast(buffer, count, type, root, handle)
After the broadcast, all processes’ buffers contain the value that used to be
in the buffer of the root process. Rank 0 is often used as the root process.

– Scatter: MPI_Scatter(content, count, type, buffer, count, type, root, handle)
Like broadcast, but content is split (scattered) over the recipients’ buffers.

– Reduce: MPI_Reduce(content, buffer, count, type, operation, root, handle)
Content from all the processes is aggregated into the buffer of the root
process. For example, add up all the values (with MPI_SUM as operation).

– Gather: MPI_Gather(content, count, type, buffer, count, type, root, handle)
The gather operation is the opposite of scatter. Split content from all
processes is written into one big buffer at the root process.

511th March 2025INF205

Collective communication

Scattering content[15] to local_chunk[3].
rank 0: 'a' 'b' 'c'
rank 1: 'd' 'e' 'f'
rank 2: 'g' 'h' 'i'
…

Gathering using MPI_Gather.
rank 0: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 1: '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''
rank 2: '' '' '' '' '' '' '' '' '' '' '' '' '' '' ''
…

Reducing local chunks into 'reduced' using MPI_Reduce with MPI_MAX.
rank 0: 'm' 'n' 'o'
rank 1: '' '' ''
rank 2: '' '' ''
…

Gathering operation (all ranks to the root rank):
– MPI_Gather(local_chunk, 3, MPI_CHAR, content, 3, MPI_CHAR, 0, …)

Scatter operation (all ranks to the root rank):
– MPI_Reduce(local_chunk, reduced, 3, MPI_BYTE, MPI_MAX, 0, …)

 Name Meaning
 __________ ___________________
 MPI_MAX maximum
 MPI_MIN minimum
 MPI_SUM sum
 MPI_PROD product
 MPI_LAND logical and
 MPI_BAND bit-wise and
 MPI_LOR logical or
 MPI_BOR bit-wise or
 MPI_LXOR logical xor
 MPI_BXOR bit-wise xor
 MPI_MAXLOC max value, location
 MPI_MINLOC min value, location

Example file: collective-communication.zip

611th March 2025INF205

Collective communication

Scattering content[15] to local_chunk[3].
rank 0: 'a' 'b' 'c'
rank 1: 'd' 'e' 'f'
rank 2: 'g' 'h' 'i'
…

Gathering using MPI_Allgather.
rank 0: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 1: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
rank 2: 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
…

Reducing local chunks into 'reduced' using MPI_Allreduce with MPI_MAX.
rank 0: 'm' 'n' 'o'
rank 1: 'm' 'n' 'o'
rank 2: 'm' 'n' 'o'
…

Gathering operation (all ranks to all ranks):
– MPI_Allgather(local_chunk, 3, MPI_CHAR, content, 3, MPI_CHAR, …)

Scatter operation (all ranks to all ranks):
– MPI_Allreduce(local_chunk, reduced, 3, MPI_BYTE, MPI_MAX, …)

 Name Meaning
 __________ ___________________
 MPI_MAX maximum
 MPI_MIN minimum
 MPI_SUM sum
 MPI_PROD product
 MPI_LAND logical and
 MPI_BAND bit-wise and
 MPI_LOR logical or
 MPI_BOR bit-wise or
 MPI_LXOR logical xor
 MPI_BXOR bit-wise xor
 MPI_MAXLOC max value, location
 MPI_MINLOC min value, location

Example file: collective-communication.zip

711th March 2025INF205

Collective communication

What MPI operation(s) would we use for the following?

– There are n processes (ranks).

– Each rank generates k = 65536 floating-point
random numbers between 0 and 1.

– Now there are k·n random numbers. We would
like all of them together to become a unit
vector x = (x0, …, xkn–1) such that x2 = 1.

– We definitely don’t want to send all the values
to all processes, especially if k becomes even
greater, but do this as efficiently as possible.

Discussed MPI
operations

MPI_Send
MPI_Recv

MPI_Wait

MPI_Bcast
MPI_Scatter
MPI_Reduce
MPI_Gather

MPI_Allgather
MPI_Allreduce

MPI_Isend
MPI_Irecv

MPI_Test

MPI_Ibcast
MPI_Iscatter
MPI_Ireduce
MPI_Igather

MPI_Iallgather
MPI_Iallreduce

(See unit-vector-incomplete.cpp, where the implementation is missing.)

https://home.bawue.de/~horsch/teaching/inf205/material/unit-vector-incomplete.cpp

8

Performance in time and in space

Time, in theory:
– Number of steps executed by a Turing machine

(or similar formalisms, such as random-access machines)
– Number of statements to be executed when going through the code

Time, in practice:
– CPU time, i.e., number of cores × measured runtime of the program

In complexity theory, the theoretical metrics are used to define computational
complexity classes, such as DTIME(f(n)) and DSPACE(f(n)) for deterministic
O(f(n)) time and space, respectively, as function of the problem size n.

Space, in theory:
– Legth of tape used by a Turing machine

(or number of registers used by a random-access machine)
– Number of elementary variables, or their total size in bytes, in the code

Space, in practice:
– Actual memory use measured during program execution

9

Hierarchy of computational complexity classes

P

NP

EXPTIME

PSPACE

NL

L

“millennium
problem”

EXPSPACE

INF205 11th March 2025

Digitalisering på Ås

Institutt for datavitskap

4 Concurrency

4.5 Concurrency theory
4.6 Process models

11

States and transitions (events)

Terminology related to concurrency is often taken from the domain of discrete
event systems (for example, finite automata). Adopting such an approach:

– A system can be in any of a finite number of states.
– Events, or transitions between states, are thought of as instantaneous.
– A concurrent process is a (partially) temporally ordered set of events.

– Two events or transitions t and t’ can be …
• … concurrent whenever they are both enabled (i.e., both can occur),

one does not inhibit the other, and t·t’ has the same outcome as t’·t;
in other words, they are concurrent if we don’t say which comes first.

• … causally dependent if they both occur, and it is important to say
which comes first, either because only one order is possible or
because it will have an impact on the outcome.

– Limitation: This model cannot make two transitions strictly synchronous.

12

Traces:1 Partially ordered sets of events

Dependence/independence between actions & events in an enterprise system:

a) Updated raw sensory data ingested into knowledge base
b) Data analysis on raw sensory data, creating aggregated data
c) Read access to raw sensory data by a user
d) Read access to aggregated data by a user

Events that are dependent can never occur concurrently.
Events are independent if they are commutative: bc = cb.

In a particular execution or process, if it is unsubstantial in what order two
events occur, they are concurrent: Below, e.g., the first and second c-d pairs:

b
a

c
d

ab ≠ ba

depen-
dence

relation

ac

b

c

dd Hasse diagram for the trace1

cacdbd = cdacbd = dcabdc = …

3Also called Mazurkiewicz traces after Polish mathematician Antoni Mazurkiewicz.

13

Diagrams for partially ordered sets

Two events are directly or indirectly causally dependent
if one is specified to occur (conclude) before the other
occurs (begins). Above: e and a are indirectly dependent.

Events are concurrent if they are not directly or indirectly
causally dependent – it does not matter which occurs first.
Above: e and a are concurrent.

By convention, Hasse diagrams are often used to denote causal dependency
of events. These diagrams remove any indirect or redundant dependencies:

a

d

e

b

c

b

ae

a

d

e

b

c

b

ae

Hasse diagramnot a Hasse diagram

This notation only
shows the transitions
(events). The states
(configurations) of the
system are not shown.

Attention

14

State-transition diagrams

In a state-transition diagram, two concurrent transitions give rise to “diamond”
patterns. More than two concurrent transitions lead to (hyper-)cube patterns:

e

eb

eba

ebe

ebae

ebd

ebad

ebde

ebade

ebadec

ebadeb

ebadebc

a

d

e

b

c

b

ae

Hasse diagram

b
d

d

d

e e

e e

da a

a a
b

bc

c

ebadebcab

Observation: With n concurrent events, we
obtain 2n states, making it prohibitively
expensive to explore the whole state space.
(“State explosion problem”.)

ε

e

INF205 11th March 2025

Digitalisering på Ås

Institutt for datavitskap

4 Concurrency

4.5 Concurrency theory
4.6 Process models

16

Petri nets

Components of a Petri net: places transitions tokens arc

2

2 1

11

1

p0

p0

t1
p2

p3
p0 t0

t0

p1

Semantics of this net:

Transition t0 can only be fired if place p0

contains at least two tokens. Firing t0

will take away two tokens from p0 and

add one token to p3.

Transition t1 can only be fired if both p0 and p1 each contain at least one token.

It removes one token from each, and adds one token to place p2.

17

Petri nets: Example

– Transitions can be fired in the following order: t0t0t1t0t1t0t1t0,

t0t0t1t1t0t0t1t0, t0t1t0t0t1t0t1t0, t0t1t0t1t0t0t1t0, t1t0t0t0t1t0t1t0, and

t1t0t0t1t0t0t1t0. At that point, respectively, a deadlock is reached.

– The net is bounded: There is a limit to the number of tokens per place.

2

t0 t1
p0

p1
p2

t0 t0

t1 t1

t0

t0 t1
t0

firing sequence

18

Petri nets and synchronous processes

Two subprocesses are synchronous (also, “coupled”) if it is specified that they
must overlap temporally, i.e., they must at least in part run at the same time.

2

p0
p2t0

p1 p3
t1

2

t2

t3

Note: Synchronicity (“coupling” – subprocesses must overlap) vs. direct causal
dependency (“linking” – may not overlap) vs. concurrency (order unspecified).

t1

t0

firing sequence
(Hasse diagram)

start of subprocess A

start of subprocess B end of subprocess B

end of subprocess A

t3

t2

Petri net representing two synchronous subprocesses A and B

1911th March 2025INF205

Petri net editor

PIPE tool for editing/simulating Petri nets: http://pipe2.sourceforge.net/

http://pipe2.sourceforge.net/

INF205 11th March 2025

Digitalisering på Ås

Institutt for datavitenskap

INF205
Resource-efficient programming

4 Concurrency

4.1 Parallel programming 4.4 Robotics middleware
4.2 MPI 4.5 Concurrency theory
4.3 Performance metrics 4.6 Process models

